期刊文献+

Fuzzy度量空间上Lipschitz型自映射的公共不动点

Common Fixed Points of Lipschitz-Type Self-Mappings in Fuzzy Metric Spaces
原文传递
导出
摘要 在Fuzzy度量空间上建立了一个Lipschitz型自映射的公共不动点定理。作为应用,得到Fuzzy度量空间上Bose型和Kannan-Reich型自映射的公共不动点定理,从而统一并推广了Bose与KannanReich在度量空间上的有关结论。 In this paper, acommon fixed point theorem of Lipschitz-type self-mappings in Fuzzy metric spaces is established. As their applications, we also obtain the common fixed point theorems of Bose-type and Kannan-Reich-type self-mappings in Fuzzy metric spaces. Our results unify and generalize the corresponding common fixed point theorems of Bose and Kannan-Reich in metric spaces.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第5期103-110,共8页 Fuzzy Systems and Mathematics
基金 江苏省高校自然科学基金资助项目(13KJB110004 14KJB110005) 江苏第二师范学院重点科研项目(JSNU-Z-4469)
关键词 FUZZY度量空间 Lipschitz型自映射 公共不动点 Fuzzy Metric Space Lipschitz-type Self-mappings Common Fixed Point
  • 相关文献

参考文献12

  • 1Kaleva O, Seikkala S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984,12:215-229.
  • 2Kaleva O. The completion of fuzzy metric spaces[J]. J. Math. Anal. Appl. , 1985,109 : 194-198.
  • 3Hadzic O. Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1989,29 : 115- 125.
  • 4Xiao J Z, Zhu X H, Jin X. Fixed point theorems for nonlinear contractions in Kaleva-Seikkala' s typefuzzy metric spaces[J]. Fuzzy Sets and Systems, 2012,200 : 65 - 83.
  • 5宋明亮.Fuzzy度量空间上隐含关系自映射的公共不动点[J].模糊系统与数学,2012,26(6):51-59. 被引量:1
  • 6Song M L, Wang Z Q. Fixed point theorems for complex non-self mappings satisfying an implicit relation in Kaleva- Seikkala' s type fuzzy metric spaces[J]. Fixed Point Theory and Applications, 2013,2013 (1) - 254.
  • 7Song M L, Zhu X J. Common fixed point for self-mappings satisfying an implicit Lipschitz-type condition in Kaleva- Seikkala's type fuzzy metric spaces[J]. Abstract and Applied Analysis,Vol. 2013 ,Article ID 278340,10 pages.
  • 8张宪.锥度量空间中Lipschitz型映射的公共不动点定理[J].数学学报(中文版),2010,53(6):1139-1148. 被引量:32
  • 9Bose R K. Some common fixed point theorems of multi-valued mappings and fuzzy mappings in ordered metric spaces [J]. Int. J. Pure Appl. Math. ,2012,75(2) :195-211.
  • 10Reich S. Some remarks concerning contraction mappings[J]. Candd. Bull. , 1971,14 : 121- 124.

二级参考文献3

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部