摘要
利用代数的方法研究了粗糙有限状态机的可恢复性、连通性与可分离性等代数性质,得到了一个粗糙有限状态机是可恢复的当且仅当它的每一个准素粗糙子有限状态机都是强连通的当且仅当其每一个单生成粗糙子有限状态机都是准素的当且仅当其每一个非空连通粗糙子有限状态机都是准素的,给出了粗糙有限状态机不是连通的的充分必要条件,讨论了粗糙有限状态机的一些分解性质。
In this paper, algebraic properties such as retrievability, connectedness and separatedness of rough finite state machines are investigated by using algebraic techniques, a rough finite state machine is retrievable if and only if its every primary submachine is strongly connected if and only if its every singly generated submachine is primary if and only if its every nonempty connected submachine is primary is obtained, a sufficient and necessary condition that a rough finite state machine is not connected is given, and some decomposition properties of rough finite state machines are discussed.
出处
《模糊系统与数学》
CSCD
北大核心
2014年第5期185-190,共6页
Fuzzy Systems and Mathematics
基金
广西自然科学基金资助项目(2014GXNSFBA118018)
广西高校教学名师教学改革项目(2013GXMS113)
玉林师范学院高等教育教学改革工程项目(14YJJG17)
关键词
粗糙有限状态机
可恢复的
连通的
可分离的
分解
Rough Finite State Machine
Retrievable
Connected
Separated
Decomposition