期刊文献+

基于BJ辅助变量法实现动力调谐陀螺仪的闭环辨识 被引量:2

Closed-loop identification of dynamically tuned gyro based on BJIV method
下载PDF
导出
摘要 为了在闭环工作条件下监测动力调谐陀螺仪的性能,研究了动力调谐陀螺仪的闭环辨识方法。首先,根据动力调谐陀螺仪闭环模型的复杂结构,对其进行化简和离散化处理,获取辨识模型集和模型阶数。接着,将辅助变量法(Ⅳ)应用于动力调谐陀螺仪的闭环辨识,并根据传统Ⅳ法的不足,提出了BJIV辨识法。该方法能够应用于BJ模型,使系统模型与噪声模型不再受辨识模型的限制。然后,利用仿真分析的方法,分析BJIV法辨识结果的无偏性与渐进离散特性。最后,采用提出的方法对某型号动力调谐陀螺仪进行单次和连续闭环辨识实验。仿真结果表明:BJIV法的辨识结果在有噪声存在的条件下是一致无偏的,渐进方差能够接近最优;闭环辨识实验结果表明:辨识拟合度优于90%,连续跟踪2h,获得了可靠的辨识结果。 To monitor the performance of a Dynamic Tuned Gyro (DTG) on-line under closed-loop working conditions,a closed-loop identification approach was explored for the DTG system.Firstly,the plant model was simplified and discretized to obtain the identification model set and model order based on the complex model structure of DTG closed-loop system.Then,the Instrumental Variable (IV) method was used to the closed-loop identification of the DTG.Aiming at the deficiency of the traditional Ⅳ method,a BJIV method was proposed.The method was applied to BJ model so that the plant model and noise model were not restricted by the identification model.Furthermore,simulations were used to analyze the consistency and asymptotic distribution of the BJIV method.Finally,single and continuous identification experiments were conducted on a DTG closed-loop system.Obtained results indicate that the estimations of BJIV method are unbiased and consistent with different noise levels,and its asymptotic variance is near-optimal.The experiment results on closed-loop identification show that the identification fitting degree is more than 90%.After continuous experiments for two hours,DTG closed-loop system is stable and the identification results are reliable.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第11期3028-3037,共10页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60972129) 精密测试技术及仪器国家重点实验室开放基金资助项目(No.pil1006)
关键词 动力调谐陀螺仪 闭环辨识 辅助变量法 BJIV辨识 Dynamically Tuned Gyro (DTG) closed-loop identification Instrumental Variable (Ⅳ)method BJIV identification
  • 相关文献

参考文献17

  • 1张连超,范世珣,范大鹏,李玲.动力调谐陀螺再平衡回路数字化的研究与实现[J].光学精密工程,2007,15(12):1974-1981. 被引量:8
  • 2ALI E,JOHN F M,PAUL A T.Direct and two-step methods for closed-loop identification:a comparison of asymptotic and finite data set performance[J] .Journal of Process Control,2000,10 (6):525-537.
  • 3PAUL V H.Closed-loop issues in system identification[J] .Annual Reviews in Control,1998,22:173-186.
  • 4EDWIN T D,PAUL V H.Analysis of closed-loop identification with a tailor-made parameterization[J] .European Journal of Control,2000,6 (1):54-62.
  • 5FORSSELL U,LJUNG L.Closed-loop identification revisited[J] .Automatica,1999,35 (7):1215-1241.
  • 6SODERSTROM,STOICA T P,TRULSSON E.Instrumental variable methods for closed-loop systems[C] .Proc.of the 10th IFAC World Congress on Automatic Control,1987:363-368.
  • 7ZHANG Y,WEN C Y,SOH Y C.Indirect Closed-Loop Identification by Optimal Instrumental Variable Method[J] .Automatica,1997,33 (12):2269-2271.
  • 8GILSON M,PAUL V H.On the relation between a bias-eliminated least-squares (BELS) and an IV estimator in closed-loop identification[J] .Automatica,2001,37(10):1593-1600.
  • 9GILSON M,PAUL V H.Instrumental variable methods for closed-loop system identification[J] .Automatica,2005,41:903-908.
  • 10LJUNG L.System Identification:Theory for the User[M] .Prentice Hall PTR,1999.

二级参考文献36

共引文献33

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部