期刊文献+

基于两级支持向量机分类的视频镜头分割方法 被引量:1

A Video Shot Segmentation Method Based on a Two-Stage Support Vector Machine Classifier
下载PDF
导出
摘要 提出一种基于两级支持向量机分类的视频镜头分割方法.第1级分类器利用分段视频首尾帧直方图距离,结合滑动窗口和陷波方法计算分段视频的特征向量,通过支持向量机来分类筛选含有镜头边界的子段;第2级分类器根据不同间距的帧间直方图的距离特征,采用时间窗口法构造特征向量,利用二叉树支持向量机多分类策略检测镜头边界的位置.结果表明,所提出的方法能够同时提高切变和渐变的镜头边界的检测效果. A video shot segmentation method based on a two-stage support vector machine (SVM) classifier was proposed. In the first stage, the feature vectors were generated by using the segmented video histo- gram distance, combining the sliding window with the trap method. Then, the subsegments containing shot boundaries were filtered out by using the SVM classifier. In the second stage, the feature vectors were obtained by histogram distance between different spacing of the frames and time window. The shot detec tion was implemented by binary tree SVM classification strategy. Experimental results show that the de tection results can be improved on both abrupt and gradual shot boundary significantly by the proposed method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第5期668-673,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金青年科学基金项目(61102082) 宇航动力学国家重点实验室开放基金项目(2013ADL-DW0302)
关键词 镜头分割 两级分类 支持向量机 分段筛选 shot segmentation two-stage classifier support vector machine (SVM) fragment screening
  • 相关文献

参考文献12

  • 1Yuan J, Wang H,Xiao L, et al. A formal study ofshot boundary detection [J]. IEEE Transactions onCircuits and Systems for Video Technology, 2007,17(2): 168-186.
  • 2巢娟,孙锬锋,蒋兴浩.基于双重检测模型的视频镜头分割算法[J].上海交通大学学报,2011,45(10):1542-1546. 被引量:7
  • 3Zhu L, Qu J F, Rahman M A, et al. An integratedmethod for video shot boundary detection[C]//Pro-ceedings of the IEEE Southeast Conference. NJ,USA :IEEE, 2010:151-154.
  • 4Angadi S A,Naik V. A shot boundary detectiontechnique based on local color moments in YCbCr col-or space [ C] //International Conference of AdvancedComputer Science and Information Technology. NJ,USA: IEEE, 2012: 57-65.
  • 5Grana C,Cucchiara R. Linear transition detection asa unified shot detection approach [J]. IEEE Transac-tions on Circuits and Systems for Video Technology,2007, 17(4): 483-489.
  • 6Mohanta P P,Saha S K, Chanda B. A model-basedshot boundary detection technique using frame transi-tion parameters [J]. IEEE Transactions on Multime-dia, 2012,14(1) : 223-233.
  • 7Zhang C,Wang W Q. A robust and efficient shotboundary detection approach based on fisher criterion[C]//The 20th ACM International Conference on Mul-timedia. New York,USA: ACM, 2012 : 701-704.
  • 8Vavsileios C,Aristidis L,Nikolaos G. Simultaneousdetection of abrupt cuts and dissolves in videos usingsupport vector machines [J], Pattern Recognition Let-ters, 2009,30(1) : 55-65.
  • 9薛玲,熊璋,欧阳元新,钟林.一种二级级联分类的镜头边界检测算法[J].计算机辅助设计与图形学学报,2008,20(5):665-670. 被引量:3
  • 10Hsu C W,Lin C J. A comparison of methods formulticlass support vector machines [J]. IEEE TransNeural Netw, 2002, 13(2): 415-425.

二级参考文献19

  • 1Boreczky J S, Rowe L A. Comparison of video shot boundary detection techniques [J]. Journal of Elec- tronic Imaging, 1996, 5(2): 122-128.
  • 2Yoo H W, Ryoo H J, Jang D S. Gradual shot boundary detection using localized edge blocks [J]. Journal of Multimedia Tools and Application, 2006, 28(3): 283-300.
  • 3Duan L Y, Xu M, Tian Q, et al. A unified framework for semantic shot classification in sports video [J]. IEEE Transactions on Multimedia, 2005, 7(6): 1066-1083.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 5Li J, Ding Y D, Shi Y Y, et al. Efficient shot boundary detection based on scale invariant features [C]//Fifth International Conference on Image and Graphics. Xi’an: IEEE Press, 2009: 952-957.
  • 6Fernando W A C, Canagarajah C N, Bull D R. Fade-in and fade-out detection in video sequences using histograms [C]//IEEE International Symposium on Circuits and Systems 2000. Geneva: IEEE Press, 2000: 709-712.
  • 7Lee M H, Yoo H W, Jang D S. Video scene change detection using neural network: improved ART2 [J]. Expert Systems with Applications, 2006, 31(1): 13-25
  • 8Zhang W G, Liu J Q, Zhang X P, et al. Video shot detection using hidden Markov models with complementary features [C] // Proceedings of the 1st ACM International Conference on Innovative Computing, Information and Control, Beiiing, 2006:593-596
  • 9Over P, Ianeva T, Kraaij W, et al. TRECVID 2006-an overview [C] //Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, Santa Barbara, 2006:321-330
  • 10Lienhart R. Comparison of automatic shot boundary detection algorithms[C] //Proceedings of SPIE, San Jose, 1998, (3656): 290-301

共引文献8

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部