期刊文献+

基于局部四值模式的人脸识别

Face recognition based on local quaternize pattern
下载PDF
导出
摘要 局部二值模式(LBP)作为经典的纹理特征描述方法广泛应用于纹理分类和人脸识别等领域。然而现有相关算法仅利用周围一个圆形邻域的信息,没有充分利用周围邻域的信息。为此,提出一种利用不同圆形邻域之间的微分结构信息进行联合描述的特征描述子,从而能够更加充分地利用邻域信息。由于所提方法在圆形邻域上每个坐标处有4种不同可能的取值情况,因此将这种模型称为局部四值模式(LQP)。在通用的人脸识别数据库FERET上的大量实验证明了所提算法的有效性。 As a classic description method of texture features,local binary pattern(LBP)has been widely used in fields of texture classification and face recognition. However,the existing algorithms do not make full use of the surrounding spatial infor-mation but only exploit a circular neighborhood. To overcome the disadvantage,a novel descriptor which applies differential structure information between different circular neighborhoods to do joint description is proposed. It has four possible values at each coordinate in the circular neighborhood. Thus the model is called local quaternize pattern(LQP). Extensive experiment re-sults on a popular face recognition dataset FERET show the effectiveness of the proposed method.
作者 云楠 冯志勇
机构地区 天津大学
出处 《现代电子技术》 2014年第22期30-33,37,共5页 Modern Electronics Technique
关键词 局部二值模式 人脸识别 纹理特征 空域信息 local binary pattern face recognition texture feature spatial information
  • 相关文献

参考文献11

  • 1OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with lo- cal binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 2OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition, 1996, 29(1) : 51-59.
  • 3GUO Z, ZHANG L, ZHANG D. A completed modeling of lo- cal binary pattern operator for texture classification [J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663.
  • 4AHONEN T, HADID A, PIETIKAINEN M. Face recognition with local binary patterns: application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2006, 28(12): 2037-2041.
  • 5张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 6LIAO S, LAW M, CHUNG A. Dominant local binary patterns for texture classification [J]. IEEE Transactions on Image Pro- cessing, 2009, 18(5): 1107-1118.
  • 7ZHANG Bao-chang. GAO Yong-sheng; ZHAO San-qiang, et al. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor [J]. IEEE Transactions on Image Processing, 2010, 19(2) : 533-544.
  • 8TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Transactions on Image Processing, 2010, 19(6) : 1635-1650.
  • 9ZHANG G, HUANG X, LI S, et al. Boosting local binary pattern (LBP)-based face recognition[C]//Proceedings of Advances in Bio- metric Person Authentication: 5th Chinese Conference on Bio- metric Recognition. Cuangzhou, China: [s.n.], 2004: 179-186.
  • 10JIN H, LIU Q, LU H, et al. Face detection using improved LBP under Bayesian framework [C]// Proceedings of Third In- ternational Conference on Image and Graphics. Hong Kong, China: [sn.], 2004: 306-309.

二级参考文献21

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476.
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部