期刊文献+

某类高阶复微分方程解的增长性 被引量:2

The Growth of Solutions of a Class of Higher Order Complex Differential Equations
下载PDF
导出
摘要 主要研究高阶微分方程f(k)+∑k-1j=1Pj(e-z)f(j)+Q(z)f=0解的增长性,其中Q(z)是有限级超越整函数,Pj(e-z)(j=1,2,…,k-1)为e-z的非常数多项式.当Q(z)满足一定条件时,该微分方程的任意非平凡解为无穷级解,并讨论了对应的非齐次微分方程解的增长性. The growth of solutions of the higher order linear differential equations f( k)+ ∑j = 1Pj( e-z) f( j)+ Q( z) f =0 are discussed,where Q( z) is a transcendental entire function of finite order,and Pj( e- z) are non-constant polynomials. Some conditions on Q( z) are given which can guarantee that every non-rivial solution of the equation is infinite order,the growth of solutions to the corresponding non-homogeneous differential equation is discussed.
作者 龚攀 肖丽鹏
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第5期512-516,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11301232 11171119) 江西省自然科学基金(20132BAB211009) 江西省教育厅青年科学基金(GJJ12207)资助项目
关键词 微分方程 角域 增长级 differential equations angular domain the order of growth
  • 相关文献

参考文献17

二级参考文献51

  • 1涂金,陈宗煊,曹廷彬,郑秀敏.某类高阶微分方程解的复振荡[J].江西师范大学学报(自然科学版),2005,29(1):8-11. 被引量:5
  • 2李纯红,顾永兴.微分方程f″+e^(az)f′+Q(z)f=F(z)的复振荡[J].数学物理学报(A辑),2005,25(2):192-200. 被引量:3
  • 3Gundersen G. Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 1988, 305: 415-429.
  • 4Chen Z X and Yang C C. On the zeros and hyper-order of meromorphic solutions of linear differential equations, Ann. Acad. Sci. Fenn. A I Math., 1999, 24: 215-224.
  • 5Wu S J. On the growth of solution of second order linear differential equation in an angle. Complex Variable., 1994, 24: 241-248.
  • 6Goldberg A A and Ostrovskii I V. The Distribution of Values of Meromorphic Functions. Irdat Nauk, Moscow, 1970.
  • 7Wu S J. On the location of zeros of solution of f'' + Af = 0 where A(z) is entire. Math. Scand., 1994, 74: 293-312.
  • 8Wu S J. Estimates for the logarithmic derivative of a meromorphic function in an angle and their application. Proceeding of International Conference on Complex Analysis at the Nankai Institute of Mathematics, International Press, 1992:235-241.
  • 9Markushevich A I. Theory of Functions of a Complex Variable Ⅱ. New Jersey, 1965.
  • 10Amemiya, I. & Ozawa, M., Non-existence of finite order solutions of w" + e-zw′ + Q(z)w = 0, Hokkaido Math. J., 10(1981), 1-17.

共引文献82

同被引文献21

  • 1戴崇基,嵇善瑜.P级射线及其与Borel方向分布问的关系[J].上海师范大学学报:自然科学版,1980(2):16-24.
  • 2Hille E. Lectures on ordinary differential equations [ M ]. California, London, Don Mills, Ontario : Addison Wesley. Publishing Company, Reading, Massachusetts Menlo park, 1969.
  • 3Gundersen G G. Finite order solution of second order line- ar differential equations [ J]. Trans Amer Math Soc, 1988, 305 ( 1 ) :415-429.
  • 4Hellerstein S, Miles J, Rossi J. On the growth of solutions off″ + gf′ + hf= 0 [ J]. Trans Amer Math Soc, 1991,324 (2) :693-706.
  • 5Gundersen G G. On the question of whetherf″ + e-zf′ +B(z)f=O can admit a solutionf=0 of finite order [J]. Pro R S E,1986,102A(1/2) :9-17.
  • 6Barry P D. Some theorems related to the cos πp theorem [ J]. Proc London Math Soc, 1970,21 (3) :334-360.
  • 7Gundersen G G. Estimate for the logarithmic derivative of a meromorphic function, plussimilar estimates [ J ]. J London Math Soc,1988,37(2) :88-104.
  • 8Sons L R. An analogue of a theorem of W. H.J. Fuchs on gap series [J]. Proc London Math Soc,1970,21 (3):525- 539.
  • 9徐俊峰,仪洪勋.高阶线性微分方程解的角域增长性[J].系统科学与数学,2008,28(6):702-708. 被引量:2
  • 10石磊,伍鹏程,龙见仁.亚纯函数的Borel方向[J].贵州师范大学学报(自然科学版),2012,30(3):55-59. 被引量:3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部