摘要
主要研究高阶微分方程f(k)+∑k-1j=1Pj(e-z)f(j)+Q(z)f=0解的增长性,其中Q(z)是有限级超越整函数,Pj(e-z)(j=1,2,…,k-1)为e-z的非常数多项式.当Q(z)满足一定条件时,该微分方程的任意非平凡解为无穷级解,并讨论了对应的非齐次微分方程解的增长性.
The growth of solutions of the higher order linear differential equations f( k)+ ∑j = 1Pj( e-z) f( j)+ Q( z) f =0 are discussed,where Q( z) is a transcendental entire function of finite order,and Pj( e- z) are non-constant polynomials. Some conditions on Q( z) are given which can guarantee that every non-rivial solution of the equation is infinite order,the growth of solutions to the corresponding non-homogeneous differential equation is discussed.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2014年第5期512-516,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11301232
11171119)
江西省自然科学基金(20132BAB211009)
江西省教育厅青年科学基金(GJJ12207)资助项目
关键词
微分方程
角域
增长级
differential equations
angular domain
the order of growth