摘要
基于线性势流理论,利用模态法在频域内研究了铰接多浮体结构在规则波作用下的运动响应.首先采用边界元法建立边界积分方程求解水动力系数及波浪激振力,然后基于最小势能原理采用拉格朗日乘子法推导出系统的约束矩阵,并利用该约束矩阵建立系统运动方程求解各运动模态的运动响应幅值.通过与已发表的5个铰接漂浮方箱在规则波作用下运动响应结果的对比,证明了方法的正确性和有效性.以3个铰接的箱型浮体为例,讨论了水深、铰接位置对结构运动响应的影响.研究发现水深、铰接位置均会对结构的运动响应产生一定影响,且对于不同的波浪周期其影响程度也不同.
Motion responses of hinged multiple floating bodies in regular waves are studied by modal analyses in frequency domain based on the linear potential flow theory.Hydrodynamic coefficients and exciting forces are obtained by solving the boundary integral equations,which are developed by boundary element method.The system motion equations for solving motion amplitude response of motion modals are established by the adoption of constrained matrix,which is derived by the principle of minimum potential energy and the method of Lagrange multipliers.The validity and effectiveness of the presented method is verified by a satisfactory agreement with published results of motion responses of five hinged floating barges under regular waves.At last,taking three hinged floating barges as examples, the influences of water depth and hinged position on motion response are discussed,respectively.The experimental results show that water depth and hinged position have certain impact on the motion response of the structure,and for the different wave periods,the influences are different.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2014年第6期618-625,共8页
Journal of Dalian University of Technology
基金
创新研究群体科学基金资助项目(51221961)
"九七三"国家基础研究发展计划资助项目(2013CB036101)
中央高校基本科研业务费专项资金资助项目(DUT14ZD203)
关键词
高阶边界元法
铰连接
多浮体
运动响应
higher-order boundary element method hinged connection multiple floating bodies motion responses