期刊文献+

光学显微结核杆菌图像的区域分割算法 被引量:1

A segmentation algorithm for optical microscopic mycobacterium tuberculosis images based on region segmentation
下载PDF
导出
摘要 为提高结核杆菌目标的分割精度,提出了一种区域级的光学显微结核杆菌图像分割算法。通过顶帽—底帽变换增强彩色图像对比度,融合图像局部特征和全局信息计算图像梯度,利用分水岭算法实现对图像的初始分割;对分割区域采用相邻区域最大相似度准则进行合并,从而得到完整的目标区域;根据结核杆菌图像的特点,通过分析结核杆菌目标区域的颜色特性,采用多阈值分割的方法滤除区域中的杂质,实现对结核杆菌目标的分割。实验结果表明,可以分割出目标对比度低以及饱和度过低的结核杆菌目标,并且对不同染色背景的图像均能取得较好的分割结果。 To improve the segmentation accuracy of mycobacterium tuberculosis (MTB ) objects,a segmentation algorithm for optical microscopic MTB images in region level was proposed.Top-bottom hat transform was used to enhance the contrast of the color images,and the image gradients were computed by comprising local features and global information of the images.Watershed algorithm was employed to implement the initial segmentation.Segmented regions were then merged by using the maximum similarity criterion in adjacent regions in order to obtain integrated object regions.The method of multi-threshold segmentation in terms of the color characteristics of MTB object regions was adopted to filter the impurities and to realize the segmentation of MTB objects.Experimental results indicate that the proposed algorithm can segment MTB objects which have low contrast and saturation and can obtain well-segmented results for images in different dyeing backgrounds.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第5期79-86,共8页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61375032)
关键词 图像处理 图像分割 分水岭 区域合并 结核杆菌 image processing image segmentation watershed region merging mycobacterium tuberculosis
  • 相关文献

参考文献16

  • 1Sadaphal P,Rao J, Comstock G W, et al. Image processingtechniques for identifying mycobacterium tuberculosis in Ziehl-Neelsen stains [ J ]. The International Journal of Tuberculosisand Lung Disease,2008, 12(5) :579 -582.
  • 2Khutlang R, Krishnan S, Dendere R, et al. Classification ofmycobacterium tuberculosis in images of ZN - stained sputumsmears[ J]. IEEE Transactions on Information Technology inBiomedicine, 2010,14(4):949-957.
  • 3Costa M G F,Cicero F F, Sena J F, et al. Automaticidentification of mycobacterium tuberculosis with conventionallight microscopy [ C ] //Proceedings of 30th AnnualInternational Conference of the IEEE Engineering in Medicineand Biology Society,2008 :382 -385.
  • 4Makkapati V, Agrawal R, Acharya R. Segmentation andclassification of tuberculosis bacilli from ZN-stained sputumsmear images [ C ]//Proceedings of IEEE InternationalConference on Automation Science and Engineering, 2009 : 217-220.
  • 5Otsu N. A threshold selection method from gray-levelhistograms[ J]. IEEE Systems, Man, and Cybernetics Society,1979,9(1):62-66.
  • 6Sotaquira M, Rueda L, Narvaez R. Detection andquantification of bacilli and clusters present in sputum smearsamples: a novel algorithm for pulmonary tuberculosisdiagnosis[C]// Proceedings of International Conference onDigital Image Processing, 2009: 117 - 121.
  • 7Nayak R, Shenoy V P, Galigekere R R. A new algorithm forautomatic assessment of the degree of TB-infection using imagesof ZN-stained sputum smear [ C ] //Proceedings of 2010International Conference on Systems in Medicine and Biology,2010:294-299.
  • 8Osman M K, Mashor M Y, Jaafar H. Detection ofMycobacterium tuberculosis in Ziehl-Neelsen stained tissueimages using zemike moments and hybrid multilayeredperceptron network [ C ] //Proceedings of 2010 IEEEInternational Conference on Systems Man and Cybernetics(SMC 2010) ,2010:4049 - 4055.
  • 9翟永平,周东翔,刘云辉.基于颜色及梯度统计特征的结核杆菌目标识别[J].国防科技大学学报,2012,34(5):146-152. 被引量:11
  • 10Arbelaez P, Maire M,Fowlkes C, et al. Contour detectionand hierarchical image segmentation [ J ]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2011,33(5):898-916.

二级参考文献13

  • 1World Health Organization, Global tuberculosis control- epidemiology, strategy, financing [ M]. Geneva, Switzerland, WHO Press ,2009.
  • 2Zhai Y P, Liu Y H, Zhou D X, et al. Automatic identification of mycobacterium tuberculosis from ZN-stained sputum smear:Algorithm and system design [ C ]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBI02010). Tianjin,2010:41 - 46.
  • 3Veropoulos K, Campbell C, Learmonth G,et al. The automatic identification of tubercle bacilli using image processing anti neural computing techniques [ C ]//Proceedings of the Eighth International Conference on Artificial Neural Networks, 1998, 2:797 - 802.
  • 4Veropoulos K, Campbell C, Learmonth G, et al. The Automated identification of tubercle bacilli in sputum - a preliminary investigation [ J ]. Analytical and Quantitative Cytology and Histology, 1999, 21 (4) :277 -281.
  • 5Forero M, Sierra E, Alvarez J, et al. Automatic sputum color image segmentation for tuberculosis diagnosis [ C ]// Proceedings of the SPIE, San Diego, 2001 : 251 261.
  • 6Forero M, Sroubek F, Cristbal G. Identification of tuberculosis bacteria based on shape and color [ J ]. Real-time Imaging, 2004,10(4) : 251 -262.
  • 7Forero M, Sroubek F, Cristbal G. Automatic identification of Mycobacterium tuberculosis by Gaussian Mixture Models [ J ]. Journal of Microscopy, 2006,223 ( 2 ) : 120 - 132.
  • 8Makkapati V, Agrawal R, Acharya R. Segmentation and classification of Tuberculosis Bacilli from ZN-stained sputum smear images [ C ]//Proceedings of 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, India, August, 2009:217 -220.
  • 9Khutlang R, Krishnan S, Dendere R, et al. Classification of Mycobacterium tuberculosis in images of ZN-stained sputum smears[ J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 14(4): 949-957.
  • 10Raof R A A, Salleh Z, Sahidan S I, et al. Color thresholding method for image segmentation algorithm of Ziehl-Neelsen sputum slide images [ C ]//Proceedings of 5th International Conference on Electrical Engineering, Computing Science and Automatic Control ( CCE 2008 ) , Mexico City,2008.

共引文献10

同被引文献15

  • 1Costa M G F, Costa F, Cicero F F, et al. Automatic identification of mycobacterium tuberculosis with conventional light mi- croscopy [C]// Conference Proceedings~ Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC: IEEE , 2008:382-385.
  • 2Nayak R, Shenoy V P, Galigekere R R. A new algorithm for automatic assessment of the degree of TB-infection using ima- ges of ZN-stained sputum smear [C]// International Conference on Systems in Medicine and Biology. Kharagpur: IEEE , 2010:294-299.
  • 3Sotaquira M, Rueda L, Narvaez R. Detection and quantification of bacilli and clusters present in sputum smear samples: A novel algorithm for pulmonary tuberculosis diagnosis [C] // International Conference on Digital image Processing. Bangkok: IEEE, 2009 : 117-121.
  • 4Makkapati V, Agrawal R, Acharya R. Segmentation and classification of tuberculosis bacilli from ZN-stained sputum smear images [C]//Automation Science and Engineering, CASE 2009, IEEE International Conference on. Bangalore: IEEE, 2009: 217-220.
  • 5Laws K I. Texture images segmentation [D]. California: University of Southern California, 1980.
  • 6Malik J, Belongie S, Leung T, et al. Contour and texture analysis for image segmentation[J]. International Journal of Com- puter Vision, 2001, 43(1):7-27.
  • 7Chen X J, Udupa J K, Alavi A, et al. GC-ASM: Synergistic integration of graph-cut and active shape model strategies for medical image segmentation [J]. Computer Vision and Image Understanding, 2013,117(5): 513-524.
  • 8Zhang Hui,Zhu Quanyin,Guan Xiangfeng. Probe into image segmentation based on sobel operator and maximum entropy al- gorithm [C]//Computer Science and Service System (CSSS), 2012.International Conference on. Nanjing: IEEE, 2012:238- 241.
  • 9Preetha M M S J, Suresh L P, Bosco M J. Image segmentation using seeded region growing [C]//Computing, Electronics and Electrical Technologies (ICCEET), 2012 International Conference on. Kumaracoil: IEEE, 2012: 576-583.
  • 10孙涵璇,谢凤英,姜志国,陈进.基于BP神经网络的结核杆菌目标识别[J].中国体视学与图像分析,2010,15(1):13-17. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部