期刊文献+

使用小波分层连通树结构的压缩信号重构 被引量:1

Compressive signal reconstruction using a hierarchical wavelet connected tree
下载PDF
导出
摘要 基于小波树模型的压缩感知可以通过较少的观测量得到鲁棒的信号重构,但采用最优树逼近时,则存在复杂度大的问题。在证明分层后的小波树仍然具备连通树性质的基础上,提出了基于小波分层连通树结构的压缩重构算法,在与原观测量一致的情况下,保证了重构精度并且提高了重构效率。实验结果表明,改进算法相对于原算法在处理大尺度数据时,效率有明显的改善。 The model-based compressive sensing (CS ) dictated that robust signal reconstruction was possible to obtain from fewer measurements,but the computational complexity of this approach was large while using the optimal tree approximation with wavelets.Based on the testified result that the wavelet hierarchical tree was still connected,the model-based wavelet hierarchical connected tree CS algorithm,was proposed.The proposed algorithm which has the equivalent measurements with that of model-based CS can enhance the signal-reconstruction efficiency and guarantee the signal-reconstruction accuracy.Numerical simulations demonstrate the validity of the new algorithm.Furthermore,the proposed algorithm has a distinct advantage when dealing with the mass of data.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第5期87-92,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61201120)
关键词 压缩感知 信号重构 小波树模型 分层连通树 compressive sensing signal reconstruction wavelet tree hierarchical connected tree
  • 相关文献

参考文献14

  • 1Candes E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequencyinformation [ J ] ? IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 2Candes E. Compressive sampling [ C ]//Proceedings of theInternational Congress of Mathematicians, 2006 : 1433 - 1452.
  • 3Donoho D L. Compressed sensing[J]. IEEE Transactions onInformation Theory, 2006, 52(4) : 1289 - 1306.
  • 4Theodoridis S, Kopsinis Y, Slavakis K. Sparsity-aware learningand compressed sensing: an overview [ J ]. arXiv preprintarXiv:1211.5231, 2012.
  • 5Kutyniok G. Theory and applications of compressedsensing[ J]. arXiv preprint arXiv: 1203. 3815 , 2012.
  • 6He L H, Carin L. Exploiting structure in wavelet-basedBayesian compressive sensing[ J] . IEEE Transactions on SignalProcessing, 2009, 57(9) :3488 -3497.
  • 7Duarte M, Wakin M, Baraniuk R. Wavelet domaincompressive signal reconstruction using a hidden Markov treemodel[ C ]//Proceedings of IEEE International Conference onAcoustics, Speech and Signal Processing, 2008:5137 -5140.
  • 8Crouse M, Nowak H D, Baraniuk R G. Wavelet-basedstatistical signal processing using hidden Markov models[ J].IEEE Transactions on Signal Processing, 1998,46(4):886-902.
  • 9Zhao Y, Zhuang X,Dai Z, et al. Wavelet compressivesampling signal reconstruction using upside-down treestructuref J]. Mathematical Problems in Engineering, 2011.DOI: 10.1155/2011/606974.
  • 10Mallat S. A wavelet tour of signal processing[ M]. Academicpress, 1999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部