期刊文献+

具耗散项波动方程整体吸引子的有限分形维数 被引量:1

Finite fractal dimensions of global attractors for a class of wave equations with dissipation
下载PDF
导出
摘要 研究了一类具耗散项的四阶非线性波动方程初边值问题整体吸引子的分形维数.利用偏微分方程的一些标准技巧对非线性项进行估计,在相对较弱的条件下用L轨道法证明了上述问题的整体吸引子具有有限分形维数. The initial boundary value problem and fractal dimensions of global attractors for a class of four order nonlinear wave equations with dissipation are studied.By some standard methods,the nonlinear term is estimated.By L-track technique,it is obtained that the attractors of the above mentioned problem has finite fractal dimensions under rather mild conditions.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2014年第6期11-15,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10971199) 河南省教育厅科学技术研究重点项目(13B110137) 2014年开封市工业科技攻关计划项目(1401012)
关键词 耗散项 波动方程 整体吸引子 L轨道 有限分形维数 dissipation wave equations global attractor L track finite fractal dimension
  • 相关文献

参考文献11

  • 1YANG Zhi-jian. Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation[J]. J Math AnalAppl, 2011, 375(2): 579-593.
  • 2YANG Zhi-jian. Glohal attrator for the Kirehhoff type equation with a strong dissipation[J]. J Differ Eqs, 2010, 249(6): 3258-3278.
  • 3CHUESHOV I, LASIECKA I. Long-time behavior of second order evolution equations with nonlinear damping[J]. Mem Amer Math Soc, 2008, 195(3) : 912-920.
  • 4NAKAO M. An attractor for a nonlinear dissipative wave equation of Kirchhoff type[J]. J Math Appl Anal, 2009, 353(3): 652-659.
  • 5GATTI S, PATA V, ZELIK S. A Gronwall-type lemma with parameter and dissipative estimates for PDEs[J]. Nonlinear Anal, 2009, 70(4): 2337- 2343.
  • 6DELL'ORO F, PATA V. Strongly damped wave equations with critical nonlinearities[J]. Nonlinear Anal, 2012, 75(6): 5723-5735.
  • 7DELL'ORE F, PATA V. Long-term analysis of strongly damped nonlinear wave equations [J]. Nonlinearity, 2011, 24(4): 3413-3435.
  • 8TEMAM R. Infinite Dimensional Dynamical System in Mathematics and Physics [ M]. New York: Springer, 1997: 100-116.
  • 9张媛媛.一类非线性发展方程的整体吸引子[J].吉林师范大学学报(自然科学版),2012,33(2):21-28. 被引量:3
  • 10NAKAO M. Existence of global smooth solution to the initial boundary value problem for the quasi- linearhyperbolic equation with a degenerate dissipative term[J]. J Differ Eqs, 1992, 98(1): 299-327.

二级参考文献9

  • 1Z. -J. Yang. Longtime behavior of the Kirehhoff type equation with strong damping in R~v. Differential Equations [ J ]. 2007,242:269-286.
  • 2Z. -J. Yang. Global attrator for the Kirchhoff type equation with a strong dissipation. Differential Equations [ J]. 2010,249:3258-3278.
  • 3M. Nakao. Existence of global smooth solution to the initial boundary value problem for the Quasi-linear hyperbolic equation with a degenerate dissi- pative tenn. Differential Equations[ J ]. 1992,98:299-327.
  • 4M. Nakao,Y. Zhijian. Global attrators for some quasi-linear wave equations with a strong dissipation. Adv. Math. Sci. Appl[ J]. 2007,17:89-105.
  • 5H T Banks, D S Gilliam, V I Shubov. Global solvability for damped abstract nonlinear hyperbolic system. Differential and Interal Equations [ J ]. 1997,10(2) :309-332.
  • 6Salim A Messaoudi. Global existence and nonexistence in a system of Petrovsky. Journal of Analysis [ J ]. 2002,265:296-308.
  • 7G. -W. Chen, Y. -P. Wang, S. Wang. Initial boundary value problem of the generalized cubic double dispersion equation. Math. Anal. Appl [ J ]. 2004,299:563-577.
  • 8G. -W, Chen,Z. -J. Yang. Existence and nonexistence of global solutions for a class of nonlinear wave equation. Math. Methods. Appl. Sci. 2000, 23:615-631.
  • 9M. Nakao. Global attrators for nonlinear wave equations with nonlinear dissipative terms. Differential Equations[ J]. 2006,227:204-229.

共引文献2

同被引文献13

  • 1Wang Mingliang,Zhou Yubin,Li Zhibin.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Physics Letters A.1996.
  • 2Ma W X, Fuchssteiner E.Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. International Journal of Non Linear Mechanics. 2012.07 : 231 -232.
  • 3Whitham G B. Variational methods and applications to water waves. Proceedings of the Royal Society of Lon- don.2011.02 : 424-425.
  • 4Matveev VB,Salle MA.Darboux transformations and solitons.2010.11 : 850-852.
  • 5He Ji-huan.A coupling method of homotopy technique and perturbation technique for nonlinear problems. Inter- national Journal of Non Linear Mechanics.2000.
  • 6Davey A,Stewartson K.On three-dimensional packets of surface waves. Proceedings of the Royal Society of London, Series .A (Mathematical and Physical Sciences). 2012.09 : 204-205.
  • 7Kaup D J.A higher-order water-wave equation and the method for solving it. Progress of Theoretical Physics.2013.
  • 8Fan Engui.Extended tanh-function method and its ap- plications to nonlinear equations. Physics Letters. 2012.
  • 9刘明鼎.时滞抛物型方程的拟小波精细积分法[J].长春大学学报,2013,23(4):440-443. 被引量:1
  • 10张媛媛,王宏伟.具耗散项波动方程整体吸引子的有限分形维数[J].扬州大学学报(自然科学版),2013,16(4):9-12. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部