摘要
通过锥上的不动点定理,证明了一类含有两个参数的四阶微分方程两点边值问题{u(4)(t)+βu″(t)-αu(t)=f(t,u(t),u″(t)),0<t<1u(0)=u(1)=u″(0)=u″(1)={0正解的存在性.
By using the fixed-point theorem in cone, the fourth-order boundary value problem with two parameters {u (4)(t)+βu″(t)-αu (t)= f(t,u(t),u″(t)),0〈 t 〈1 u(0)= u(1)= u″(0)= u″(1)=0is discussed, and some new results of existence about positive solutions are obtained.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2014年第6期16-19,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11261053)
甘肃省自然科学基金资助项目(1308RJZA125)
关键词
四阶边值问题
正解
不动点
锥
fourth-order boundary value problem
positive solution
fixed-point
cone