期刊文献+

SWAN模型模拟风浪场侧边界失真范围研究

Researches of distortion region near lateral boundaries for SWAN model calculating wind wave fields
下载PDF
导出
摘要 鉴于SWAN模型存在着不能有效地模拟固壁边界附近风浪场的缺点,即在边界附近所模拟的波要素存在失真的现象,研究了在不同水深、风速和风向情况下模型侧边界附近波要素的失真范围,并对计算结果进行了详细的分析。结果表明水深、风速和风向对于侧边界附近波要素的失真范围具有不同的影响,即在风速一定的情况下,失真范围随着水深的增大而增大;水深一定的情况下,失真范围随着风速的增大而减小、随着风向的增大而增大。在利用SWAN模型模拟计算近岸或内陆湖泊风浪场时,必须采取适当的措施以减少实际计算域侧边界附近计算结果的失真范围。 Because the wind wave model Simulating WAves Nearshore ( SWAN) cannot effectively simulate the wave fields near the lateral boundaries, the distortion regions of calculated wave factors including wave heights, periods and directions near the lateral boundaries are carefully studied in the case of different water depths, wind speeds and wind directions respectively. The calculation results show that the effects of water depth, wind speed and wind direction on the distortion regions are different. In the case of a certain wind speed, the greater the water depth is, the larger the distortion region is;in the case of a certain water depth, the greater the wind speed is, the smaller the distortion region is, and the greater the wind direction is, the larger the distortion region is. Therefore, when SWAN is employed to calculate the wind wave fields near the shorelines of sea or of inland lakes, the appropriate methods must be adopted to reduce the calculation errors.
出处 《海洋工程》 CSCD 北大核心 2014年第6期91-97,共7页 The Ocean Engineering
基金 国家自然科学基金资助项目(51079082) 上海市自然科学基金项目(14ZR1419600) 上海市教委一流学科建设项目 2013年上海市研究生教育创新计划实施项目(第二批)
关键词 SWAN模型 失真范围 风浪场 波要素 边界条件 SWAN model distortion region wind wave fields wave factors boundary condition
  • 相关文献

参考文献17

  • 1The SWAN Team. SWAN Technical Documentation[ R]. The Netherlands: Delft University of Technology, 2013.
  • 2Booij N, Hohhuijsen L H, Ris R C. The "SWAN" wave model for shallow water[ CJWProceeding of 25th International Conference on Coastal Engineer, ASCE. 1996:668-676.
  • 3Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions 1 :model description and validation[ J]. Journal of Geophysical Research, 1999, 104(C4) :7649-7666.
  • 4Ris R C, Holthuijsen L H, Booij N. A third-generation wave model for coastal regions 2: verification [ J]. Journal of Geophysical Research, 1999, 104(C4) :7667-7681.
  • 5Lin W Q, Sanford L P, Suttles S E. Wave measurement and modeling in Chersapeake Bay [ J . Continental Shelf Research, 2002, 22:2673-2686.
  • 6Shi John Z, Luther Mark E, Meyers Stephen. Modeling of wind wave-induced bottom processes during the slack water periods in Tampa Bay, Florida[ J]. International Journal for Numerical Methods in Fluids, 2006, 52 (11 ) :1277-1292.
  • 7Signell R P, Carniel S, Cavaleri L, et al. Assessment of wind quality for oceanographic modeling in semi-enclosed basins [ J] Journal of Marine Systems, 2005,53:217-233.
  • 8Rogers W E, Kaihatu J M, Hsu L, et al. Forecasting and hindcasting waves with the SWAN model in the southern California Bight [ J ]. Coastal Engineering, 2007, 54:1-15.
  • 9Bottema M, Vledder G. A ten-year data set for fetch-and depth-limited wave growth[ J]. Coastal Engineering, 56(6) :703-725.
  • 10Moeini M H, Etemad-Shahidi A. Wave parameter hindcasting in a lake using the SWAN model [ J] . Sciemia Iranica, Transaction A : Civil Engineering, 2009, 16 (2) : 156-164.

二级参考文献91

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部