摘要
本文研究了蚁群聚类法和径向基函数神经网络的基本原理,结合大坝变形安全监控的要求,探讨了大坝变形监测数据聚类处理方法,构建了径向基神经网络隐层基函数,由此表征了大坝变形规律的影响因素与变形之间的非线性映射关系.通过上述研究,建立了大坝变形蚁群聚类径向基函数神经网络(ACC-RBF)安全监控模型.实例分析表明,所提出的模型比传统的径向基神经网络模型预测精度更高.
This paper studies the basic principle of ant colony clustering algorithm and radial basis function neural network. Combined with the safety requirements of dam deformation monitoring, the clustering meth- od for the monitoring data of dam deformation is explored~ the basis function in the hidden layer of radial basis function neural network is built~ and then the nonlinear mapping relationship between the factors which affect the deformation law of the dam and deformation, is shown. Through the above research, an ant colony cluste- ring radial basis function neural network model is established for safety monitoring of dam deformation. The case study shows that the prediction accuracy of the proposed model is higher than that of the traditional radial basis function neural network model.
出处
《三峡大学学报(自然科学版)》
CAS
2014年第6期33-36,共4页
Journal of China Three Gorges University:Natural Sciences
基金
国家自然科学基金项目"静动结合的高拱坝健康性态监测和诊断方法研究"(51279052)
国家自然科学基金重点项目"多因素协同作用下混凝土坝长效服役的理论与方法"(51139001)
关键词
聚类蚁群
RBF神经网络
预测模型
大坝安全监控
clustering ant colony
radial basis function neural network
prediction model
dam safety monitoring