期刊文献+

基于IBCC优化算法的多阈值图像分割

Multi-threshold Image Segmentation Based on Improved Bacterial Colony Chemotaxis Optimization Algorithm
下载PDF
导出
摘要 图像阈值分割算法中,如何确定最优阈值是关键。使用传统多阈值法对较复杂图像进行分割,存在计算复杂度高、分割速度慢等问题。文章将细菌群体趋药性优化算法和阈值分割算法相结合,并且对细菌群体趋药性算法进行改进,提出了基于改进细菌群体趋药性优化算法的多阈值图像分割算法。实验结果证明,文章提出的算法具有很好的收敛性和稳定性,得到了较好的图像分割效果和图像分割速度。 How to determine the optimal threshold is the key in the image segmentation algorithm. Using traditional multi- threshold method to segment the more complex image,some problems produce such as high computational complexity,slow speed of segmentation.This paper combines bacterial colony chemotaxis optimization algorithm and multi- threshold segmentation algorithm,improves the bacterial colony chemotaxis optimization algorithm. This paper proposes multi- threshold image segmentation based on improved bacterial colony chemotaxis( IBCC) optimization algorithm. The experimental results show that,the proposed algorithm t has good convergence and stability,and get a good result of image segmentation and image segmentation speed.
机构地区 忻州师范学院
出处 《忻州师范学院学报》 2014年第5期16-20,共5页 Journal of Xinzhou Teachers University
基金 山西省自然科学基金(2013011017-2) 山西省高校科技创新项目(2013150) 忻州师范学院重点学科专项课题(ZDXK201203和XK201308)
关键词 图像分割 多阈值 优化算法 细菌群体趋药性算法 image segmentation multi-threshold optimization algorithm bacterial colony chemotaxis algorithm
  • 相关文献

参考文献4

二级参考文献32

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2[1]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 3[2]Bhanu B,Lee S,Ming J.Alaptive Image Segmentation Using a Genetic Algorithm[J].IEEE Trans.on System,Man,and Cybernetics,1995,5(12):1543-1565.
  • 4[3]Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J.Asssoc.Comput.Mach.,1962,9:259-267.
  • 5[4]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171-190.
  • 6[5]Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 7[6]Tsai W H.Moment-Preserving Thresholding:A New Approach[J].Computer Vision,Graphics,and Image Processing,1985,29:377-393.
  • 8[7]Kittler J,Illingworth J.Minimum Error Thresholding[J].Pattern Recognition,1986,19:41-47.
  • 9[8]Cho S,Haralick R,Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J].Pattern Recognition,1989,22:609-617.
  • 10[9]Rosenfeld A,De La Torre P.Histgram Concavity Analysis as an Aid in Threshold Selection[J].IEEE Trans.on Systems,Man and Cybernetics,1983,SMC-13:231-235.

共引文献1594

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部