期刊文献+

简化5级-CKF在SINS大失准角初始对准中的应用 被引量:5

Application of Simplified 5th-CKF in SINS Initial Alignment for Large Misalignment Angles
下载PDF
导出
摘要 针对大失准角情况下,利用3级-CKF进行SINS初始对准性能不高的问题,提出5级-CKF算法。在系统模型噪声和量测噪声均为加性噪声且量测方程为线性方程时,推导了简化5级-CKF算法,步骤需要在Kalman滤波的基础上利用5级容积采样点对非线性状态方程的状态及其方差进行预测。采用SINS静基座初始对准仿真实验验证算法的有效性,结果表明:简化5级-CKF对任意失准角都是有效的,失准角较小时,3级-CKF和简化5级-CKF的对准精度和收敛速度性能相近,但简化5级-CKF的数值稳定性更高;失准角较大时,简化5级-CKF较3级-CKF具有更高的收敛速度和对准精度。 Against the performance of 3th-CKF is not high for SINS initial alignment with large misalignment angle, a simplified 5th-CKF was deduced under the situation that both process noise and measurement noise were additive noise with liner measurement equation. The simplified 5th-CKF is identical to that of classical Kalman filter except for the predicting of states and their covariance matrix by spherical-radial cubature rule. Simulation results show that the simplified 5th-CKF is useful under any misalignment angle, And under large misalignment angle, the per-formance of simplified 5th-CKF is superior to that of 3th-CKF in terms of accuracy and SINS alignment speed.
出处 《测绘科学技术学报》 CSCD 北大核心 2014年第5期473-476,共4页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41074010) 江苏省普通高校研究生科研创新计划项目(CXZZ12_0939) 江苏高校优势学科建设工程项目(SZBF2011-6-B35)
关键词 捷联惯导系统 大失准角 初始对准 容积准则 简化5级-CKF simplified 5th-CKF SINS large misalignment angle initial alignment spherical-radial
  • 相关文献

参考文献4

二级参考文献33

共引文献164

同被引文献48

  • 1王丹力,张洪钺.惯导系统初始对准的非线性滤波算法[J].中国惯性技术学报,1999,7(3):18-22. 被引量:30
  • 2宋迎春.GPS动态导航定位的当前统计模型与自适应滤波[J].湖南人文科技学院学报,2005,22(5):7-9. 被引量:9
  • 3吴富梅,杨元喜.基于小波变换和序贯抗差估计的捷联惯导初始对准[J].武汉大学学报(信息科学版),2007,32(7):617-620. 被引量:8
  • 4Teixeira B O S,Chandrasekar J,Torres L,et al.State estimation for linear and non-linear equality-constrained systems[J].International Journal of Control,2009,82(5):918-936.
  • 5Simon D.Kalman filtering with state constraints:A survey of linear and nonlinear algorithms[J].IET Control Theory&Applications,2010,4(8):1303-1318.
  • 6Straka O,Dunik J,Simandl M.Truncation nonlinear filters for state estimation with nonlinear inequality constraints[J].Automatica,2012,48(1):273-286.
  • 7Rao C V,Rawlings J B,Lee J M.Constrained linear state estimation:A moving horizon approach[J].Automatica,2001,37(10):1619-1628.
  • 8Kolas S,Foss B A,Schei T S.Constrained nonlinear state estimation on the UKF approach[J].Computers and Chemical Engineering,2009,33(8):1386-1401.
  • 9Arasaratnam I,Haykin S.Cubature Kalman filter[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 10Arasaratnam I,Haykin S,Hurd T R.Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J].IEEE Transactions on Signal Processing,2010,58(10):4977-4993.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部