期刊文献+

基于视觉压缩感知的传感网络行人目标辨识方法 被引量:5

Visual compressive sensing-based pedestrian identification in sensor networks
下载PDF
导出
摘要 行人目标辨识是指在视觉传感网络中识别检测到的目标,对智能安防具有重要意义。对行人目标辨识所需数据进行压缩可提高视觉传感网络行人目标辨识的实时性。提出了一种基于视觉压缩感知的传感网络行人目标辨识方法。无线视觉节点获取行人目标图像后,首先提取图像中行人脸部的尺度不变特征,并采用特征字典对目标进行稀疏表示,得到目标特征直方图。然后视觉节点应用压缩感知方法对特征直方图进行数据压缩,并传输至中心节点。最后,中心节点应用非负正交匹配追踪算法重构特征直方图,并采用支持向量机对特征直方图进行分类辨识。实验表明,该方法能够在不影响行人目标辨识准确率的前提下,有效减少在视觉传感网络中进行行人目标辨识时所需传输的数据量。 Pedestrian identification is to identify a detected target emerged in visual sensor networks, which is important for the applications of intelligence security. Data compression for the pedestrian identification can enhance the instantaneity. This paper proposes a visual compressive sensing based pedestrian identification scheme in sensor networks. In this scheme, scale-invariant features are extracted and represented by a sparse feature histogram via feature dictionary. After that, the histogram is compressed according to compressive sensing theory and sent by the node to the server. At the server, a nonnegative compressive sampling matching pursuit algorithm is developed to reconstruct the compressed histogram. And then support vector machine is applied to classify the histogram to identify the person. The proposed scheme is verified with built visual sensor networks. The results show this scheme can greatly reduce the data amount needed to transmit without reducing the pedestrian identification accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第11期2433-2439,共7页 Chinese Journal of Scientific Instrument
基金 国家863计划(2012AA121500) 国家自然科学基金(61272428) 教育部博士点基金(20120002110067)资助项目
关键词 行人目标辨识 压缩感知 数据关联 视觉传感网络 Pedestrian identification compressive sensing data association visual sensor networks
  • 相关文献

参考文献15

  • 1WANG X, WANG S. Collaborative signal processing for target tracking in distributed wireless sensor networks[J]. Journal of Parallel and Distributed Computing, 2007, 67(5) 501-515.
  • 2ZHENG S, XIE B, HUANG K, et al. Multi-view pede- strian recognition using shared dictionary learning with group sparsity [C]. Proceedings of the 18th International Conference on Neural Information Processing (ICONIP), 2011 : 629-638.
  • 3AKYILDIZ I F, MELODIA T, CHOWDHURY K R. A survey on wireless multimedia sensor networks [J]. Com- puter networks, 2007, 51 (4): 921-960.
  • 4YANG A Y, MAJI S, HONG K, et al. Distributed com-pression and fusion of nonnegative sparse signals for mul- tiple-view object recognition [C]. Information Fusion, 2009. FUSION'09. 12th International Conference on. IEEE, 2009: 1867-1874.
  • 5TAUBMAN D S, MARCELLIN M W, RABBANI M. JPEG2000: Image compression fundamentals, standards and practice [J]. Journal of Electronic Imaging, 2002, 11(2): 286-287.
  • 6SORO S, HEINZELMAN W. A survey of visual sensor networks [J]. Advances in Multimedia, 2009: 1-21.
  • 7CANDIS E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incom- plete frequency information [J]. Information Theory, IEEE Transactions on, 2006, 52(2): 489-509.
  • 8DONOHO D L. Compressed sensing [J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
  • 9DO T T, CHEN Y, NGUYEN D T, et al. Distributed com- pressed video sensing [C]. Image Processing (ICIP), 2009 16th IEEE International Conference on. IEEE, 2009: 1393-1396.
  • 10KANG L W, LU C S. Distributed compressive video sens- ing [C]. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009: 1169-1172.

二级参考文献29

  • 1杨春梅,万柏坤,丁北生.数据预处理和初始化方法对K-均值聚类的影响[J].仪器仪表学报,2003,24(z1):189-192. 被引量:4
  • 2YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images: A survey [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24( 1 ) :34-58.
  • 3SANIA A, INALOU, SHOHREH K. AdaBoost based face detection in color images with low false alarm [ C ]. Second International Conference on Computer Modeling and Simulation, 2010, 2 : 107-111.
  • 4YANG G Z, HUANG T S. Human face detection in a complex background[J]. Pattern Recognition, 1994, 27 ( 1 ) :53-63.
  • 5WANG, J Z, YANG H M. Face detection based on tem- plate matching and 2DPCA algorithm [ C ]. Congress on Image and Signal Processing, 2008, 4:575-579.
  • 6LIU X N, GENG G H. Automatically face detection based on BP neural network and Bayesian decision[ J]. Natural Computation (ICNC), 2010, 3 : 1590-1594.
  • 7SHAVERS C, LI R, LEBBY G. An SVM-based approach to face detection[ C]. System Theory, 2006: 362-366.
  • 8ROBERT E, SCHAPIRE, YORAM S. Improved boosting algorithms using confidence rated predictions [ J ]. Ma- chine Learning, 1999, 37 (3) :297-336.
  • 9LI G, XU Y P, WANG JY. An improved AdaBoost face detection algorithm based on optimizing skin color model [ C]. International Conference on Natural Computation, 2010, 4:2013-2015.
  • 10VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition ( CVPR), 2001, 1 : 511-518.

共引文献13

同被引文献38

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部