期刊文献+

基于量子位实数编码的优化算法及轧制规程多目标优化 被引量:12

An optimization quantum-bit real-coded algorithm for optimizing multi-objective rolling schedule
下载PDF
导出
摘要 针对热连轧轧制规程优化问题,以等功率裕量和轧制能耗为优化目标函数建立热连轧轧制规程多目标优化模型,提出基于量子位实数编码的热连轧轧制规程多目标优化算法。该算法将免疫遗传算法框架与量子计算思想相结合,采用量子位实数编码,利用量子态干涉进行遗传算子的交叉和变异,同时保证非支配解按拥挤距离选择优势免疫抗体种群,得到Pareto全局最优解集。以某轧钢厂热连轧精轧机组为例,验证本文所提及算法的有效性。实例分析表明,所提及的算法在寻优能力和收敛速度上均优于传统的NSGA-Ⅱ算法,能够获得更好的Pareto解集,有效地解决热连轧轧制规程多目标优化问题,改善了轧制能耗。 To optimize rolling schedule in hot continuous rolling, a multi-objective optimization model with optimized objective function based on equal power allowance and rolling energy consumption is constructed, and a multi-objective optimization algorithm based on quantum-bits real-coded is proposed for rolling schedule in a hot continuous rolling. The algorithm combines immune genetic algorithm framework with quantum computing idea, employs quantum-bits real coding, interferes crossover and mutation of genetic operator using the quantum state, and ensures the non-dominated solutions selecting advantage immune antibody population based on crowded distance so as to obtain the optimal Pareto solutions. Taking the finishing mill group in hot continuous rolling as an example, the effectiveness of the proposed algorithm is verified. The example analysis indicates that the optimization ability and convergence speed of the proposed algorithm are better than the traditional NSGA-II algorithm, which can obtain better Pareto solutions. The algorithm effectively solves the multi-objective optimization problem for the rolling schedule and improves the rolling energy consumption.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第11期2440-2447,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61102124)资助项目
关键词 多目标优化 非支配排序 量子位 实数编码 轧制规程 multi-objective optimization non-dominated sorting quantum-bits real coding rolling schedule
  • 相关文献

参考文献18

  • 1WANG D D, TIEU A K. DE BOER F G et al. Toward a heuristic optimum design of rolling schedules for tandem cold rolling mills [J]. Engineering Applications of Artifi- cial Intelligence, 2000, 13: 397-406.
  • 2刘国平,曾强,张健民,唐东.热轧粗轧机组负荷分配的优化算法[J].河南冶金,2005,13(1):14-15. 被引量:3
  • 3王建辉,徐林,闫勇亮,顾树生.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383. 被引量:27
  • 4李勇,刘建昌,王昱.改进权重自适应GA及冷连轧轧制规程多目标优化[J].控制理论与应用,2009,26(6):687-693. 被引量:25
  • 5COELLO C A. Evolutionary multi-objective optimization: A historical view of the field [J]. IEEE Computational In- telligence Magazine, 2006, 1(1): 28-36.
  • 6DHANALAKSHMI S, KANNAN S, MAHADEVAN K, et al. Application of modified NSGA-II algorithm to com- bined economic and emission dispatch problem [J]. Inter-national Journal of Electrical Power & Energy Systems, 2011, 33(4): 992-1002.
  • 7RAMESH S, KANNAN S, BASKAR S. Application of modified NSGA-II algorithm to multi-objective reactive power planning [J]. Applied Soft Computing, 2012, 12(2): 741-753.
  • 8CHENG J X, ZHANG G X, LI Z D, et al. Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems [J]. Soft Compu- ting, 2012, 16(4): 597-614.
  • 9MORA A M, GARCIA-SANCHEZ P, MERELO J J, et al. Pareto-based multi-colony multi-objective ant colony op- timization algorithms: an island model proposal [J]. Soft Computing, 2013, 17(7): 1175-1207.
  • 10LIAO T J, STUTZLE T, MONTES de Oca M A, et al. A unified ant colony optimization algorithm for continuous optimization [J]. European Journal of Operational Re- search, 2014, 234(3): 597-609.

二级参考文献100

共引文献116

同被引文献139

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部