期刊文献+

基于高斯和与SCKF的非线性非高斯滤波算法 被引量:12

Nonlinear non-Gaussian filtering algorithm based on Gaussian sum filter and SCKF
下载PDF
导出
摘要 针对均方根容积卡尔曼滤波(SCKF)对非高斯情况滤波效果差的问题,在分析SCKF和高斯和滤波基础上,提出一种高斯和均方根容积卡尔曼滤波新算法。算法采用高斯和形式来逼近非高斯后验概率密度,将SCKF作为子滤波器,对每个高斯分量进行时间和量测更新,使其有效解决非线性非高斯滤波问题。仿真结果表明,高斯和均方根容积卡尔曼滤波估计精度高于粒子滤波和高斯和扩展卡尔曼滤波算法,与容积粒子滤波精度相当,但耗时约为容积粒子滤波的15%,是一种较好平衡跟踪精度和实时性的非线性非高斯滤波算法。 To improve filtering result of square-root cubature Kalman filter(SCKF) under non-Gaussian condition, a Gaussian sum square-root cubature Kalman filter(GSSCKF) algorithm is developed based on analyzing SCKF and Gaussian sum filter(GSF). The new algorithm uses the form of Gaussian sum to approximate the non-Gaussian posterior probability density, takes SCKF as the Gaussian sub-filter to realize time and measurement update for each Gaussian component, the algorithm can effectively deal with nonlinear non-Gaussian filtering problem. Simulation results show that the accuracy of GSSCKF is higher than particle filter(PF) and Gaussian sum extended Kalman filter(GSEKF). Compared with cubature particle filter(CPF), the precision is similar, but the consuming time of GSSCKF is about 15% of CPF. GSSCKF performs well in term of the balance between the tracking accuracy and the real-time.
作者 张凯 单甘霖
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第11期2524-2530,共7页 Chinese Journal of Scientific Instrument
基金 国防预研基金(513270203)资助项目
关键词 非线性非高斯 高斯和滤波 均方根容积卡尔曼滤波 贝叶斯统计 nonlinear non-Gaussian Gaussian sum filter square-root cubature Kalman filter bayesian estimation
  • 相关文献

参考文献16

二级参考文献128

共引文献154

同被引文献89

  • 1苏寒松,李坦,刘威,张金良.FFPI粗糙度测量扫描方案探讨[J].仪器仪表学报,2002,23(z1):215-216. 被引量:1
  • 2杜文琴,巫莹柱.接触角测量的量高法和量角法的比较[J].纺织学报,2007,28(7):29-32. 被引量:47
  • 3KARNY M. Approximate Bayesian recursive estimation[J]. Information Sciences, 2014, 285: 100-111.
  • 4FOX D, BURGARD W, TI-IRUN S. Markov localization for mobile robots in dynamic environments [ J ]. Journal of Artificial Intelligence Research, 1999, 11 : 391-427.
  • 5KABAOGLU N. Target tracking using particle filters with support vector regression [ J ]. IEEE Trans on Vehicular Technology, 2009, 58(5): 2569 - 2573.
  • 6NAGY A M, AHMED A, ZAYED H H. Hybrid iterated kalman particle filter for object tracking problems [ C ]. Proceed- ings of the International Conference on Computer Vision Theory and Applications, 2013, 2 : 375-38.
  • 7LI Q L, SONG Y. Cubature MCL: Mobile robot monte carlo localization based on cubature particle filter [ C ]. Chinese Control Conference ( CCC), IEEE, 2012 : 5141- 5145.
  • 8GAMALLO C, REGUEIRO C V, QUINTfA P, et al. Omnivision-based kid-monte carlo localization [ J ]. Ro- botics and Auto- nomous Systems, 2010, 58 ( 31 ) : 295-305.
  • 9DURRANT-WHYTE H, BAILEY T. Simultaneous locali- zation and mapping:Part Ⅰ[ J ]. Robotics & Automation Magazine, IEEE, 2006, 13(2) : 99-110.
  • 10ARASARATNAM I, HAYKIN S. Cubature Kalman Fil- ters [ J ]. Automatic Control, IEEE Transactions on, 2009, 54(6) : 1254-1269.

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部