期刊文献+

螺旋CT用于确定运动靶区时的体积重建缺陷的模体研究

A phantom study for the reconstruction defects of moving target volume decision by spiral CT
原文传递
导出
摘要 目的 用已知体积模体按放疗需要常规CT扫描,比较螺旋CT在图像三维重建时的体积与真实体积之间差异.方法 以呼吸运动模拟装置为基础,采用蜡块制作成不同体积的规则模体1~9个,设置运动幅度为2.5 cm,运动频率为18次/min.将9个模体同时不连续扫描10次,计算螺旋CT对不同已知静止、运动物体三维重建时体积与真实体积之间差异并行配对t检验.结果 所有模块合计的三维重建体积大于其已知静止体积(121.77 cm^3:103.14 cm^3,P=0.038),但又明显小于其已知运动体积(121.77 cm^3:161.75 cm^3,P =0.045),这种现象在不同体积模块的体积重建过程中得到了重复.不同体积模块重建体积与已知运动、静止体积的相对偏差均呈现随模块体积变小而增大的趋势.结论 对运动靶区而言,由于螺旋CT扫描速度很快使扫描过程中存在着重复扫描和漏扫情况,导致所获靶体积不能完整代表ITV. Objective To investigate reasonable method of deciding internal target volume (ITV) by comparing physical phantom volumes (including moving volume) with reconstruction volumes of spiral CT scanning.Methods The various-volume wax blocks which were labeled No.1-9 were made and put on the respiratory motion simulator.The range of motion was set 2.5 cm and frequency 18 beats/min.All blocks were scanned 10 times continuously and imported into the Eclipse TPS.All blocks volumes were calculated and then compared with the true physical volumes and paired t-test.Results The reconstruction volumes of 1-9 blocks were bigger than their stationary volumes (121.77 cm^3 vs.103.14 cm^3,P =0.038),but significantly smaller than their moving volumes (121.77 cm^3 vs.161.75 cm^3,P =0.045).The results can be gotten in different volume block scanning.The relative deviation of reconstruction volumes and the moving volumes tends to increase as the stationary physical volume decreases.Conclusions As to moving targets,conventional spiral CT scanning speed is too fast to collect all volume information of targets.So the one-time-scanning volume does not represent the ITV.
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2014年第6期530-533,共4页 Chinese Journal of Radiation Oncology
关键词 体层摄影术 X线计算机 螺旋 运动模体 体积重建 精度 Tomography, X-ray computed, spiral Moving phantom Volume reconstruction Precision
  • 相关文献

参考文献21

  • 1祁振宇,黄劭敏,邓小武.放疗计划CT值的校准检测及其影响因素分析[J].癌症,2006,25(1):110-114. 被引量:53
  • 2Mori S, Kanematsu N, Mizuno H, et al. Physical evaluation of CT scan methods for radiation therapy planning: comparison of fast, slow and gating scan using the 256-detector row CT scanner [ J ]. Phys Med Biol,2006,51:587-600.
  • 3Henley S J, Richards TB, Underwood JM, et al. Lung cancer incidence trends among men and women-United States, 2005-- 2010 [J]. MMWR Morb Mortal Wkly Rep,2014,63:l-5.
  • 4Youlden DR, Cramb SM, Baade PD. The international epidemiology of lung cancer: geographical distribution and secular trends [ J ]. J Thorac Onco1,2008,3:819-831.
  • 5Cooper S, Spiro SG. Small cell lung cancer:treatment review [ J ]. Respirology,2006,11 : 241-248.
  • 6Chi A, Tom6 WA, Fowler J, et al. Stereotactic body radiation therapy in non-small-cell lung cancer: linking radiobinlogical modeling and clinical outcome [ J]. Am J Clin Oncol, 2011,34 : 432-441.
  • 7Underberg RW, Lagerwaard FJ, Cuijpers JP, et al. Four- dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer [J]. Int J Radiat Oncol Biol Phys, 2004,60 : 1283 -1290.
  • 8Baiter JM, Lam KL, McGinn CJ,et al. Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [ J]. Int J Radiat Oncol Biol Phys, 1998,41:939-943.
  • 9Kubo HD, Len PM, Minohara S, et al. Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center [J]. Med Phys,2000,27:346-353.
  • 10International commission on radiation units and measurements. ICRU-62 report. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU report 50) [ R]. Bethesda: ICRU, 1999.

二级参考文献45

  • 1朱广迎,石安辉,吴昊,余荣,韩树奎.肺癌调强放疗中靶区规划新概念—IGTV和ICTV[J].中华放射肿瘤学杂志,2006,15(1):72-72. 被引量:12
  • 2戴建荣,胡逸民.图像引导放疗的实现方式[J].中华放射肿瘤学杂志,2006,15(2):132-135. 被引量:184
  • 3Bosmans G, Buijsen J, Dekker A, et al. An "in silico" clinical trial comparing free breathing, slow and respiration correlated computed tomography in lung cancer patients. Radiother Oncol, 2006,81 ( 1 ) :73-80.
  • 4ICRU. ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (supplement to ICRU Report 50 ). Bethesda: Internationl Commission on Radiation Units and Measurements, 1999.
  • 5van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol, 2004,14 ( 1 ) : 52-64.
  • 6Allen AM, Siracuse KM, Hayman JA, et al. Evalution of the influence of breathing on the movement and modeling of lung toumors. Int J Radiat Oncol Biol Phys,2004,58 (4) :1251-1257.
  • 7Mageras GS, Pevsner A, Yorke ED, et al. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys,2004,60 (3) :933-941.
  • 8MUTIC S, PALTA J R, BUTKER E K, et al. Quality assurance for computed tomography simulators and the computed tomography simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66 [J]. Med Phys, 2003,30 (10) :2762-2793.
  • 9BENEVENTI S, CHIONNE F,GOBBI G, et al. Quantitative CT tomography for radiotherapy treatment planning: calibration phantom andsources of error [J]. Radiother Oncol, 1995, 37 (supplement): 41.
  • 10LUCA C, ANTONELLA F,FRANCESCA B, et al. Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy [J]. Radiother oncol, 1998,48(3) :335-338.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部