期刊文献+

改进的基于邻域嵌入的图像超分辨率重构 被引量:5

Improved image super-resolution reconstruction based neighbor embedding
下载PDF
导出
摘要 为了提高传统的基于邻域嵌入的图像超分辨率重构算法的时间效率,采用了一种利用图像块方向信息进行邻域选择和训练集分类的新方法。该方法首先利用图像块方向的不同对训练集进行分类,然后在分类后的子训练集中选择与待重构图像块的方向相似的图像块作为邻域进行重构,并对重构结果进行迭代反投影全局后处理,进一步提高重构质量,最后对改进方法进行数值实验验证。结果表明,该方法不仅把超分辨率重构的时间效率提高了10倍以上,而且重构质量也得到了改善,具有较好的实际应用价值。 In order to improve the time-efficiency of traditional super-resolution reconstruction based on neighbor embedding, a new method was proposed using direction information of image patches to choose neighborhood and classify the training set. Firstly, the training set was classified through the differences of patches directions. Secondly, the neighborhood used to reconstruct was chosen in the sub-sets by selecting training patches with the similar direction, and then the iterative back-projection was applied during the reconstruction to further enhance the super-resolution image quality. Finally, numerical experiments were conducted to verify the new method. The results show that the proposed algorithm increases time-efficiency more than 10 times and super-resolution performance is improved. The new method has better practical value.
出处 《激光技术》 CAS CSCD 北大核心 2015年第1期13-18,共6页 Laser Technology
关键词 图像处理 超分辨率重构 邻域嵌入 方向 迭代反投影 image processing super-resolution neighbor embedding direction iterative back-projection
  • 相关文献

参考文献14

  • 1CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE,2004:1-8.
  • 2SEUNG H S, LEE D D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 3FAN W, YEUNG D Y. Image hallucination using neighbor embedding over visual primitive manifolds[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2007.New York, USA:IEEE, 2007: 1-7.
  • 4CHAN T K, ZHANG J P, PU J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J]. Pattern Recognition Letters, 2009, 30(5): 494-502.
  • 5KOVESI P. Image features from phase congruency[J]. Journal of Computer Vision Research, 1999, 1(3): 1-26.
  • 6SU K, TIAN Q, XUE Q, et al. Neighborhood issue in single-frame image super-resolution[C]// IEEE International Conference on Multimedia and Expo, 2005.New York,USA:IEEE, 2005:4.
  • 7LIAO X X, HAN G Q, WO Y, et al. New feature selection for neighbor embedding based super-resolution[C]// 2011 International Conference on Multimedia Technology (ICMT). New York, USA:IEEE, 2011: 441-444.
  • 8CAO M M, GAN Z L, ZHU X C. Super-resolution algorithm through neighbor embedding with new feature selection and example training[C]// 2012 IEEE 11th International Conference on Signal Processing (ICSP). New York, USA:IEEE, 2012: 825-828.
  • 9YANG S Y, WANG M, CHEN Y G, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4016-4028.
  • 10WAN B, MENG L, MING D, et al. Video image super-resolution restoration based on iterative back-projection algorithm[C]// IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2009.New York, USA:IEEE, 2009: 46-49.

同被引文献53

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部