期刊文献+

基于视频的行人车辆检测与分类 被引量:9

Pedestrian-vehicle Detection and Classification Based on Video
下载PDF
导出
摘要 针对传统智能监控中行人车辆检测与分类算法存在目标分割不完整、分类准确率低等问题,提出一种基于视频的行人车辆检测与分类算法。利用领域信息动态调整置信区间构造混合高斯模型,采用卡尔曼滤波预测目标下一帧的位置。通过自适应EM聚类方法提取目标长宽比和面积作为特征,将目标分为行人和车辆。在模型估计过程中假设相邻帧目标做匀速直线运动,推导出目标面积变化满足线性关系,并对目标跟踪和分类进行修正,进一步提高检测准确性。实验结果表明,该算法的人车检测准确率达到90%以上,分类准确率达到80%以上。 Aiming at the problem of incomplete target segmentation and low classification accuracy of traditional pedestrian-vehicle detection and classification algorithm in intelligent monitoring,this paper presents a pedestrian-vehicle detection and classification algorithm based on video. The algorithm dynamically adjusts confidence intervals for constructing Gaussian mixture model using neighborhood information,and uses the Kalman filter to predict the position of the target in the next frame. It extracts the target aspect ratio and area through adaptive EM clustering as a feature,then divides target into pedestrians and vehicles. Assume that target makes the uniform linear motion in adjacent frame and derive the target area to meet the linear relationship change. Thus target tracking and classification can be modified to improve the detection accuracy in the end. Experimental result show that the algorithm detection rate is over 90% and classification rate is over 80% .
作者 杨阳 唐慧明
出处 《计算机工程》 CAS CSCD 2014年第11期135-138,共4页 Computer Engineering
基金 国家科技重大专项基金资助项目(2010ZX03004-003-01) 中央高校基本科研业务费专项基金资助项目(2012FZA5008)
关键词 行人车辆检测 智能监控 运动目标检测 目标跟踪 目标分类 模型估计 pedestrian-vehicle detection intelligent surveillance motion object detection objcet tracking object classification model estimation
  • 相关文献

参考文献15

  • 1刘治红,骆云志.智能视频监控技术及其在安防领域的应用[J].兵工自动化,2009,28(4):75-78. 被引量:54
  • 2Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Press,2005:25-28.
  • 3Viola P,Jones M,Snow D.Detecting Pedestrians Using Patterns of Motion and Appearance [J].International Journal of Computer Vision,2005,63(2):153-161.
  • 4Lipton A J.Moving Target Classification and Tracking from Real-time Video[C]// Proceedings of the 4th IEEE Workshop on Applications of Computer Vision.Princeton,USA:IEEE Press,1998:8-14.
  • 5Stauffer C.Learning Patterns of Activity Using Real-time Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intellignece,2000,22(8):747-757.
  • 6Stauffer C,Grimson W E L.Adaptive Background Mixture Models for Real-time Tracking [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society,1999:2246-2257.
  • 7Elgammal A,Harwood D R.Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance [J].Proceedings of the IEEE,2002,90(7):1151-1163.
  • 8Kertesz C.Texture-based Foreground Detection [J].International Journal of Signal Processing of Image Processing and Pattern Recognition,2011,4(4):51-61.
  • 9Geman S,Geman D.Stochastic Relaxation Gibbs Distributions and the Bayesian Restoration of Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 10Surendra G,Osama M.Detection and Classification of Vehicles [J].IEEE Transactions on Intelligent Transportation Systems,2002,3(1):37-47.

二级参考文献34

  • 1李位星,范瑞霞.基于DSP的运动目标跟踪系统[J].自动化技术与应用,2004,23(4):46-49. 被引量:13
  • 2C Wren, A Azarbayejani, T Darrell, A Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Trans. PAMI, 1997,19(7):780~785
  • 3T Olson, F Brill. Moving Object Detection and Event Recognition Algorithms for Smart Cameras. Proc. DARPA Image Understanding Workshop, May 1997
  • 4I Haritaoglu, D Harwood, L S Davis. W4: Rea-Time Surveillance of People and Their Activities. IEEE Trans. PAMI, 2000,22(8):809~830
  • 5C Stauffer, W E L Grimson. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. PAMI, 2000,22(8):747~757
  • 6R T Collins, A J Lipton, T Kanade. A System for Video Surveillance and Monitoring. Proc. Am. Nuclear Soc.(ANS) Eighth Int'l Topical Meeting Robotic and Remote Systems, Apr. 1999
  • 7C Anderson, P Burt, G Can der Wal. Change Detection and Tracking Using Pyramid Transformatin techniques. Proc. SPIE-Intelligent Robots and Computer Vision, 1985,(579):72~78
  • 8J Barron, D Fleet, S Beauchemin. Performance of Optical Flow Techniques", International Journal of Computer Vision, 1994,12(1):42~77
  • 9A M Tekalp. Digital Video Processing. Rochester, NY, 1995
  • 10F Liu, R W Picard. Finding Periodicity in Space and Time. Proc. Int'l Conf. Computer Vision, 1998,376~383

共引文献311

同被引文献66

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部