期刊文献+

基于蚁群聚集信息素的半监督文本分类算法 被引量:4

Semi-supervised Text Classification Algorithm Based on Ant Colony Aggregation Pheromone
下载PDF
导出
摘要 半监督文本分类中已标记数据与未标记数据分布不一致,可能导致分类器性能较低。为此,提出一种利用蚁群聚集信息素浓度的半监督文本分类算法。将聚集信息素与传统的文本相似度计算相融合,利用Top-k策略选取出未标记蚂蚁可能归属的种群,依据判断规则判定未标记蚂蚁的置信度,采用随机选择策略,把置信度高的未标记蚂蚁加入到对其最有吸引力的训练种群中。在标准数据集上与朴素贝叶斯算法和EM算法进行对比实验,结果表明,该算法在精确率、召回率以及F1度量方面都取得了更好的效果。 There are many algorithms based on data distribution to effectively solve semi-supervised text categorization. However,they may perform badly when the labeled data distribution is different from the unlabeled data. This paper presents a semi-supervised text classification algorithm based on aggregation pheromone, which is used for species aggregation in real ants and other insects. The proposed method,which has no assumption regarding the data distribution, can be applied to any kind of data distribution. In light of aggregation pheromone,colonies that unlabeled ants may belong to are selected with a Top-k strategy. Then the confidence of unlabeled ants is determined by a judgment rule. Unlabeled ants with higher confidence are added into the most attractive training colony by a random selection strategy. Compared with Naive Bayes and EM algorithm,the experiments on benchmark dataset show that this algorithm performs better on precision,recall and Macro F1.
出处 《计算机工程》 CAS CSCD 2014年第11期167-171,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61375059 61332016)
关键词 文本分类 半监督学习 聚集信息素 自训练 Top-k策略 随机选择策略 text classification semi-supervised learning aggregation pheromone self-training Top-k strategy random selection strategy
  • 相关文献

参考文献14

  • 1Sebastiani F.Machine Learning in Automated Text Categorization [J].ACM Computing Surveys,2002,34(1):1-47.
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 4Zhu Xiaojin.Semi-supervised Learning Literature Survey [R].University of Wisconsin,Technical Report: CS-1530,2008.
  • 5Zhu Xiaojin,Goldberg A B.Introduction to Semisupervised Learning[M].[S.l.]:Morgan & Claypool Publishers,2009.
  • 6Cohen I,Cozman F G,Sebe N.Semi-supervised Learning of Classifiers: Theory,Algorithm,and Their Application to Human-computer Interaction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(12):1553-1567.
  • 7Blum A,Chawla S.Learning from Labeled and Unlabeled Data Using Graph Mincuts[C]//Proceedings of the 18th International Conference on Machine Learning.San Francisco,USA:[s.n.],2001:19-26.
  • 8Li Ming,Zhou Zhihua.SETRED: Self-training with Editing[C]//Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining.Hanoi,Vietnam:[s.n.],2005:611-621.
  • 9Nigam K,McCallum A K,Thrun S.Text Classification from Labeled and Unlabeled Documents Using EM[J].Machine Learning,2000,39(2/3):103-134.
  • 10Nigam K.Using Unlabeled Data to Improve Text Classification[D].[S.l.]:Carnegie Mellon University,2001.

二级参考文献40

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4周水庚.[D].上海:复旦大学,2000.
  • 5王建会 胡运发.基于等效半径的文本分类算法.技术报告:021011346[R].复旦大学,2002..
  • 6C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery,1998, 2(2): 955--974.
  • 7R. Schapire, Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 2000, 39(2/3) : 135-- 168.
  • 8Y. Dasarathy B. V. Minimal consistent set (MCS) identification for optimal nearest neighbor decision system terms design. IEEE Trans. on System Man Cybern, 1994, 24(3): 511-517.
  • 9W. Lam, C. Y. Ho. Using a generalized instance set for automatic text categorization. The 21st Ann. Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval(SIGIR'98), Melbourne, Australia, 1998.
  • 10Fuchun Peng, Dale Schuurmans. Self-supervised Chinese word segmentation. The 4th International Symposiun on Intelligent Data Analysis(IDA 2001), Cascais, Portugal, 2001.

共引文献421

同被引文献36

  • 1Mousavian Z,Masoudi-Nejad A.Drug-target Interaction Prediction via Chemogenomic Space:Learning-based Methods[J].Expert Opinion on Drug Metabolism&Toxicology,2014,10(9):1273-1287.
  • 2Zhao Mingzhu,Chang Haoteng,Zhou Qiang,et al.Predicting Protein-ligand Interactions Based on Chemical Preference Features with Its Application to New D-amino Acid Oxidase Inhibitor Discovery[J].Current Pharmaceutical Design,2014,20(32):5202-5211.
  • 3Keiser M J,Roth B L,Armbruster B N,et al.Relating Protein Pharmacology by Ligand Chemistry[J].Nature Biotechnol,2007,25(2):197-206.
  • 4Cheng A C,Coleman R G,Smyth K T,et al.Structurebased Maximal Affinity Model Predicts Small-molecule Druggability[J].Nature Biotechnology,2007,25(1):71-75.
  • 5Zhu Shanfeng,Okuno Y,Tsujimoto G,et al.A Probabilistic Model for Mining Implicit‘Chemical Compound-Gene’Relations from Literature[J].Bioinformatics,2005,21(S2):245-251.
  • 6Yamanishi Y,Araki M,Gutteridge A,et al.Prediction of Drug-target Interaction Networks from the Integration of Chemical and Genomic Spaces[J].Bioinformatics,2008,24(13):232-240.
  • 7Bleakley K,Yamanishi Y.Supervised Prediction of Drugtarget Interactions Using Bipartite Local Models[J].Bioinformatics,2009,25(18):2397-2403.
  • 8Yamanishi Y,Kotera M,Kanehisa M,et al.Drug-target Interaction Prediction from Chemical,Genomic and Pharmacological Data in an Integrated Framework[J].Bioinformatics,2010,26(12):246-254.
  • 9Gnen M.Predicting Drug-target Interactions from Chemical and Genomic Kernels Using Bayesian Matrix Factorization[J].Bioinformatics,2012,28(18):2304-2310.
  • 10Xia Zheng,Wu Lingyun,Zhou Xiaobo,et al.Semisupervised Drug-protein Interaction Prediction from Heterogeneous Biological Spaces[J].BMC Systems Biology,2010,4(S2).

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部