期刊文献+

基于多维贪婪搜索的人工蜂群算法 被引量:2

Artificial Bee Colony Algorithm Based on Multi-dimensional Greedy Search
下载PDF
导出
摘要 人工蜂群算法在多峰高维函数优化问题的求解上取得了较好的结果,但随着函数的复杂度及维数增高,仍存在收敛速度慢、易陷入局部最优等问题。为此,提出一种新的人工蜂群算法。将人工蜂群对食物源的单维贪婪搜索改进为多维贪婪搜索以增强蜂群的搜索能力,避免在个别维度上出现较优解的食物源由于达到更新阈值却被废弃而造成迂回搜索的现象,引入扰动搜索机制避免迭代后期食物源位置在个别维度收敛导致算法陷入局部最优。仿真实验结果表明,该算法能保持深度挖掘和广度搜索上的平衡,在高维函数优化问题求解的收敛速度和计算精度方面表现出较好的性能。 Artificial Bee Colony ( ABC ) algorithm can be efficiently employed to solve the multimodal and high dimensional function optimization problem. However,low search speed and premature convergence frequently appear with more complex problem. In order to improve the algorithm performance,this paper proposes a new artifciall bee colony algorithm . It introduces a search equation based on multi-dimensional greedy search to enhance local search and avoid the solution to be abandoned which achieves optimum value in some dimensions but reach the maximum update limit. New algorithm also adds a disturbance mechanism to avoid obtaining partial optimal solutions when premature convergence in a few dimensions. Experimental results show the new algorithm can balance the exploitation and exploration,has more fast convergence speed and better computational precision in solving the multimodal and high dimensional function optimization problem.
出处 《计算机工程》 CAS CSCD 2014年第11期189-193,共5页 Computer Engineering
基金 天津市应用基础与前沿技术研究计划基金资助重点项目(13JCZDJC26300)
关键词 人工蜂群算法 函数优化 贪婪搜索 扰动搜索 深度挖掘 广度搜索 Artificial Bee Colony( ABC) algorithm function optimization greedy search disturbance search depth excavation scope search
  • 相关文献

参考文献15

  • 1Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization [R].Kayseri,Turkey: Erciyes University,Technical Report:TR06,2005.
  • 2Karaboga D,Basluzk B.A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony(ABC) Algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 3Karaboga D,Basluzk B.On the Performance of Artificial Bee Colony( ABC ) Algorithm [J].Applied Soft Computing,2008,8(1):687-697.
  • 4Karaboga D,Akay B.Artificial Bee Colony( ABC ),Harmony Search and Bees Algorithms on Numerical Optimization[C]//Proceedings of Innovative Production Machines and Systems Virtual Conference.Melikgazi,Turkey:[s.n.],2009.
  • 5Alatas B.Chaotic Bee Colony Algorithms for Global Numerical Optimization [J].Expert Systems with Applications,2010,37(8):5682-5687.
  • 6罗钧,李研.具有混沌搜索策略的蜂群优化算法[J].控制与决策,2010,25(12):1913-1916. 被引量:78
  • 7暴励,曾建潮.自适应搜索空间的混沌蜂群算法[J].计算机应用研究,2010,27(4):1330-1334. 被引量:46
  • 8Gao Weifeng,Liu Sanyang.A Modified Artificial Bee Colony Algorithm [J].Computers & Operations Research,2012,39(3):687-697.
  • 9丁海军,冯庆娴.基于boltzmann选择策略的人工蜂群算法[J].计算机工程与应用,2009,45(31):53-55. 被引量:60
  • 10向万里,马寿峰.基于轮盘赌反向选择机制的蜂群优化算法[J].计算机应用研究,2013,30(1):86-89. 被引量:30

二级参考文献66

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 3袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 4陈炳瑞,杨成祥,冯夏庭,王文杰.自适应混沌遗传混合算法及其参数敏感性分析[J].东北大学学报(自然科学版),2006,27(6):689-693. 被引量:8
  • 5Teodorovi' c D, Dell' Orco M.Bee colony optimization-a cooperative learning approach to complex transportation problems[C]//Proceedings of the 10th EWGT Meeting,Poznan,13-16 September 2005.
  • 6Drias H,Sadeg S,Yahi S.Cooperative bees swarm for solving the maximum weighted satisfiability problem,computational intelligence and bioinspired systems[C]//Proceedings of the 8th International Workshop on Artificial Neural Networks,IWANN 2005,Vilanova i la Gehr, Barcelona, Spain, 8-10 June 2005.
  • 7Abbass H A.Marriage in honey-bee optimization (MBO):a haplometrosis polyginous swarming approach[C]//The Congress on Evolutionary Computation,2001:207-214.
  • 8Abbass H A.A monogenous MBO approach to satisfiability[C]//Proceeding of the International Conference on Computational Intelligence for Modeling, Control and Automation, 2001.
  • 9Yang X S.Engineering optimizations via nature-inspired virtual bee algorithms[C]//Lecture Notes in Computer Science.Springer,2005: 317-323.
  • 10Karaboga D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005.

共引文献214

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部