期刊文献+

改进的三角网格表面近似测地线算法 被引量:2

Improved Surface Approximate Geodesic Algorithm on Triangle Mesh
下载PDF
导出
摘要 三角网格表面的测地线计算问题可转化为三角网格表面两点间的最短路径计算问题,为了快速地计算三角网格表面测地线,提出一种基于缩小最短路径搜索区域的三角网格表面近似测地线算法。将三角网格沿坐标系三坐标轴方向进行空间单元划分,使用A?算法求出两点间的最短路径盒子序列,进而得到新的搜索区域,计算三角网格上两点间的最短路径,迭代细分最短路径邻域内的边以构造新的网格求解测地线。实验结果表明,该算法能够快速准确地计算出三角网格表面任意两点间的近似测地线,有效解决大型三角网格上最短路径计算速度慢的问题,计算速度较改进前的算法提高了10倍~59倍。将该算法应用到虚拟肝脏手术系统的区域标定中,可满足虚拟场景中对计算实时性和效果真实性的要求。 The computation of approximate geodesics algorithm on triangle mesh can be transformed to the computation of the shortest path on triangle mesh. In order to figure out the geodesics on triangle mesh efficiently, an improved approximate geodesics algorithm is presented. A weighted graph is constructed by splitting triangle mesh along the Cartesian coordinate axes,thus the shortest path on lattice can be computed by A*algorithm and a new region of search can be defined. The neighboring edges of the shortest path are iteratively subdivided to construct a new weighted graphs to approach the geodesic. Experimental results show the improved algorithm can figure out the geodesics precisely and efficiently . The speed up ratio of the algorithm range is increased between 10 and 59 . A region labeling method on virtual liver surgery based on the improved algorithm is also proposed,which can meet the computational real-time and quality requirements of virtual scene.
出处 《计算机工程》 CAS CSCD 2014年第11期225-228,249,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61379103 61202333 61303185) 高等院校博士点专项基金资助项目(20104307110003)
关键词 测地线 三角网格 空间单元划分 A^(*)算法 虚拟肝脏手术 触觉交互设备 geodesic triangle mesh division of space unit A^(*) algorithm virtual liver surgery haptic interface device
  • 相关文献

参考文献12

  • 1Mitchell J S B,Mount D M,Papadimitriou C H.The Discrete Geodesic Problem [J].SIAM Journal on Computing,1987,16(4):647-668.
  • 2Surazhsky V,Surazhsky T,Kirsanov D,et al.Fast Exact and Approximate Geodesics on Meshes [J].ACM Transactions on Graphics,2005,24(3):553-560.
  • 3Chen J,Han Y.Shortest Paths on a Polyhedron [C]//Proc.of the 6th Annual Symposium on Computational Geometry.[S.l.]:ACM Press,1990:360-369.
  • 4Xin Shiqing,Ying Xiang,He Ying.Constant-time All-pairs Geodesic Distance Query on Triangle Meshes[C]// Proc.of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.[S.l.]:ACM Press,2012:31-38.
  • 5Crane K,Weischedel C,Wardetzky M.Geodesics in Heat:A New Approach to Computing Distance Based on Heat Flow [J].ACM Transactions on Graphics,2013,32(5):152.
  • 6Kanai T,Suzuki H.Approximate Shortest Path on a Polyhedral Surface and Its Applications [J].Computeraided Design,2001,33(11):801-811.
  • 7杨斌,范媛媛,王继东.点云模型上近似测地线的计算[J].计算机应用,2011,31(4):1050-1052. 被引量:3
  • 8杜培林,屠长河,王文平.点云模型上测地线的计算[J].计算机辅助设计与图形学学报,2006,18(3):438-442. 被引量:14
  • 9Xin Shiqing,Wang Guojin.Applying the Improved Chen and Han’s Algorithm to Different Versions of Shortest Path Problems on a Polyhedral Surface [J].Computeraided Design,2010,42(10):942-951.
  • 10Rusfell S,Norvig P.Artificial Intelligence---A Modern Approach[M].2nd ed.New Jersey,USA:Prentice Hall Press,2004.

二级参考文献33

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2肖春霞,冯结青,缪永伟,郑文庭,彭群生.基于Level Set方法的点采样曲面测地线计算及区域分解[J].计算机学报,2005,28(2):250-258. 被引量:16
  • 3杜培林,屠长河,王文平.点云模型上测地线的计算[J].计算机辅助设计与图形学学报,2006,18(3):438-442. 被引量:14
  • 4孙伟,张彩明,杨兴强.Marching Cubes算法研究现状[J].计算机辅助设计与图形学学报,2007,19(7):947-952. 被引量:25
  • 5PAULY M, KEISER R, KOBBELT L, et al. Shape modeling with point sampled geometry [ C ]// Proceedings of SIGGRAPH. New York: ACM, 2003:641-650.
  • 6ADAMSON A, ALEXA M. Anisotropic point set surfaces[ C ]// Proceedings of AFRIGRAPH. New York: ACM, 2006:7 - 13.
  • 7MINCHEOL Y, IOANNIS I, SEUNGYONG L. Variation Bayesian noise estimation of point set[ C ]//IEEE International Cnnference on Shape Modeling and Applications. Washington, DC: IEEE Computer Society, 2009:226-234.
  • 8KIMMEL R, SETHIAN A. Computing geodesic paths on manifolds [J]. Applied Mathematics, 1998, 95(15): 8431-8435.
  • 9SURAZHSKY V, SURAZHSKY T, KIRSANOVA D. Fast exact and approximate geodesics on meshes [ J ]. ACM Transactions on Graph-ics, 2005, 24(3) : 553 - 560.
  • 10KLENIN J, ZACHMANN G, Point cloud surfaces using geometric proximity graphs [J]. Computers and Graphics, 2004, 28(6):839-850.

共引文献19

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部