期刊文献+

面向高清视频监控系统的实时运动检测算法 被引量:9

Real-time Motion Detection Algorithm for High Definition Video Surveillance System
下载PDF
导出
摘要 针对高清视频监控系统中精确运动检测的高实时性需求,提出一种基于计算统一设备架构(CUDA)的运动检测算法。采用一种改进帧差与背景差分相结合的方法,减少背景更新干扰,提升运动检测的精确性。在CUDA内进行视频运动检测计算,避免传统图形处理器硬解码后视频数据在显示内存与CPU之间传输的问题。运用块内多线程合并访问共享内存的方式,减少52.9%全局内存访问量,解决CUDA大规模访问全局内存延迟较大的问题。实验结果表明,该算法在保证准确性的同时,针对高清视频每秒可传输52.6帧,能够满足实时性要求。 Aiming at high real-time demand for accurate motion detection in high-definition video surveillance system, this paper proposes an efficient motion detection algorithm based on Compute Unified Device Architecture(CUDA). By using an improved frame difference and background subtraction method of combining,background interference update is reduced and the accuracy of motion detection is enhanced. By performing video motion detection calculations in the CUDA, the traditional Graphic Processing Unit ( GPU ) hard decoded video data avoid storing in display memory transferred to CPU,which is the bottleneck problem. This paper uses multiple threads within a block coalesced access shared memory, reduces the amount by 52. 9% of the global memory access, solves large-scale access to global memory latency CUDA larger problem. Experimental results show that for high-definition video monitoring system,the proposed motion detection algorithm can reach 52. 6 frames per second,ensuring the accuracy as well,and can meet the real-time requirements.
作者 彭爽 蒋荣欣
出处 《计算机工程》 CAS CSCD 2014年第11期288-291,296,共5页 Computer Engineering
基金 浙江省级重点科技创新团队基金资助项目(2011R09021-02)
关键词 视频监控 运动检测 帧差法 背景差分法 硬解码 合并访问 video surveillance motion detection frame difference method background subtraction method hard decode coalesced access
  • 相关文献

参考文献14

  • 1Hu Weiming,Tan Tieniu,Wang Liang,et al.A Survey on Visual Surveillance of Object Motion and Behaviors [J].IEEE Transactions on Systems,Man,and Cybernetics,2004,34(3):334-352.
  • 2Scotti G,Marcenaro L,Coelho C,et al.Dual Camera Intelligent Sensor for High Definition 360 Degrees Surveillance [J].IEEE Proceedings on Vision,Image and Signal Processing,2005,152(2):250-257.
  • 3周游,刘艳滢,王春民,陈静,陈秋萍,魏雅娟.几种人体运动检测算法的比较分析[J].吉林大学学报(信息科学版),2009,27(6):652-657. 被引量:11
  • 4Padalikar S,Diamos G.Exploring the Latency and Bandwidth Tolerance of Cuda Applications[Z].2009.
  • 5McHugh J M,Konrad J,Saligrama V,et al.Foregroundadaptive Background Subtraction [J].IEEE Signal Processing Letters,2009,16(5):390-393.
  • 6Davide A,Matteucci M,Naccari M.A Revaluation of Frame Difference in Fast and Robust Motion Detection [C]//Proc.of the 4th ACM International Workshop on Video Surveillance and Sensor Networks.New York,USA:ACM Press,2006:215-218.
  • 7Gonzalez R C,Wintz P.Digital Image Processing[M].2nd ed.New York,USA:Academic Press,1987.
  • 8Yang J,Tian M.Denoising of Coal Flotation Froth Image Using Opening and Closing Filters with Area Reconstruction and Alternating Order Filtering [M]//Deng Hepu,Miao Duoqian,Lei Jingsheng.Artificial Intelligence and Computational Intelligence.Berlin,Germany:Springer,2011:376-382.
  • 9Rane M A.Fast Morphological Image Processing on GPU Using CUDA [D].Pune,India:Pune University,2013.
  • 10Han Bo,Zhou Bingfeng.Efficient Video Decoding on GPUs by Point Based Rendering [C]//Proc.of Eurographics Symposium on Graphics Hardware.Vienna,Austria:ACM Press,2006:79-86.

二级参考文献12

共引文献10

同被引文献85

  • 1夏建涛,何明一.基于Bhattacharyya距离准则的核空间特征提取算法[J].计算机学报,2004,27(5):683-689. 被引量:4
  • 2刘振玉.华中电力通信网监控系统设计介绍[J].华中电力,2006,19(2):38-40. 被引量:4
  • 3汤亚波,徐守时.基于D-S证据理论的多源遥感图像目标数据联合关联算法[J].中国科学技术大学学报,2006,36(5):466-471. 被引量:11
  • 4齐丽凤,陈贺新,赵岩.基于DCT系数相关性的音视频混合压缩算法[J].计算机工程与应用,2007,43(1):44-46. 被引量:2
  • 5Mugicki D, Song Taek-Lyul, Lee H H, et al. Correlated Doppler-assisted Target Tracking in Clutter [ J ]. lET Radar Sonar & Navigation,2013,7( 1 ) :94-100.
  • 6Comanciu D, Visvanathan R, Meer P. Kernel-based Object Tracking [ J ]. IEEE Transactions on Pattern Analysis & Machine Intelligence ,2003,40 ( 5 ) :564-575.
  • 7Ning Jifeng,Zhang Lei,Zhang David,et al. Robust Mean- shift Tracking with Corrected Background-weighted Histogram [ J ]. lET Computer Vision,2012,6 ( 1 ) :62-69.
  • 8Kalal Z, Mikolajczyk K, Matas J. Tracking-learning- detection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2012,34 ( 7 ) : 1409-1422.
  • 9Oh S,Russell S,Sastry S. Markov Chain Monte Carlo Data Association for General Multiple-target Tracking Pro- blems[C]//Proceedings of IEEE Conference on Decision & Control. Washington D. C., USA: IEEE Press, 2005 : 735- 742.
  • 10van Lieshout M N M. Markov Point Processes and Their Applications [ M ]. London, UK: Imperial College Press, 2000.

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部