期刊文献+

a-淀粉酶Amy7C及其突变体催化常数的定量预测

Quantitative Predicting Kcat of a-amylase Amy 7C and Its Mutants
下载PDF
导出
摘要 【目的】利用α-淀粉酶Amy7c及其突变体的氨基酸信息,预测该酶的催化常数(Kcat),并筛选出能预测α-淀粉酶Kcat最具效果的氨基酸属性。【方法】先以20-1前馈反向传播的神经网络为模型,完成535种氨基酸属性对α-淀粉酶Amy7C及其突变体催化常数的拟合。再将α-淀粉酶Amy7C及其54个突变体的数据分为2组,用35个酶作为训练组进行拟合,20个酶作为验证组进行检验。最后,对8种不同层次及神经元个数的模型进行比较。【结果】110个氨基酸属性可实现20-1神经网络模型收敛,表明这些氨基酸属性可用于预测α-淀粉酶的催化常数,不同指标的预测效果不同。多模型的分析结果显示,不同模型对训练组R值的结果具有显著性差异,而对训练组P值、验证组R值和验证组P值结果无显著性差异。【结论】氨基酸分布概率等属性可以用于预测α-淀粉酶催化常数。四层神经网络模型是预测α-淀粉酶催化常数的相对理想的模型。 Objective]The Kcat ofα-amylase Amy7C and its mutants was predicted using ami-no acid information,and the most suitable amino acid property for predicting Kcat ofα-amyl-ase was selected.[Methods]20-1 feedforward backpropagation neural network was used to screen 535 amino acid properties as predictors to predict the Kcat ofα-amylase Amy7C and its 54 mutants,which were divided into two group,35 of them served as training group for fitting,and the other 20 were treated as validation.Eight models for different layers and numbers of neurons were also compared.[Results]110 amino acid properties,which con-verged during fitting in the 20-1 neural network model,could be used to predict the Kcat. Different amino acid properties presented different predicting effect.The multi-model results showed that there was significant difference between R values in training groups,but there was no significant difference between P values in training groups,as well as R and P values in vali-dation groups.[Conclusion]Some amino acid properties such as distribution probability could be used to predict the Kcat of α-amylase,to which four-layer neural network reveals the rela-tive ideal model.
机构地区 广西科学院
出处 《广西科学院学报》 2014年第4期294-298,共5页 Journal of Guangxi Academy of Sciences
基金 广西自然科学基金重点项目(2013GXNSFDA019007) 广西科技创新能力与条件建设计划项目(桂科能12237022) 广西人才小高地建设专项基金项目资助
关键词 氨基酸属性 a-淀粉酶 催化常数 预测 amino acid property a-amylase Kcat prediction
  • 相关文献

参考文献14

  • 1罗志刚,杨景峰,罗发兴.α-淀粉酶的性质及应用[J].食品研究与开发,2007,28(8):163-167. 被引量:64
  • 2YanS,WuG.SearchingofpredictorstopredictpHop-timum ofcellulases[J].Appl Biochem Biotechnlo,2011,165:856-869.
  • 3YanS,WuG.PredictionofoptimalpHinhydrolyticreactionofbeta-glucosidase[J].ApplBiochem BiotechA:EnzymeEngBiotech,2013,169:1884-94.
  • 4YanS,WuG.PredictionofoptimalpH andtempera-tureofcellulases using neuralnetwork[J].ProteinPeptLett,2012,19:29-39.
  • 5YanS,WuG.Predictorsforpredictingtemperatureoptimuminbeta-glucosidases[C].Proceedingsofthe6thInternationalSymposium onBiocatalysisandBio-syntheticEngineering (iSBBE2013).November11-13,2013,Shanghai,China.
  • 6YanS,WuG.Exhaustedjackknifevalidationexempli-fiedbypredictionoftemperatureoptimuminenzymat-icreactionofcellulases[J].ApplBiochem Biotech A:EnzymeEngBiotech,2012,166:997-1107.
  • 7YanS,WuG.Predictionoftemperatureoptimuminenzymaticreactionofbeta-cellobiosidaseswithexhaus-tedjackknifevalidation[J].LifeSciJ,2013,10(3):2180-2189.
  • 8YanS,WuG.PredictionofMichaelis-Mentenconstantofbeta-glucosidasesusingnitrophenyl-beta-D-glucopy-ranosideassubstrate[J].ProteinPeptLett,2011,18:1053-1057.
  • 9YanS,WuG.PredictionofMichaelis-Mentenconstantinbeta-cellobiosidase’sreactionwithlactosideassub-strate[J].EnzymeEng,2011,1:102.doi:10.4172/eeg.1000102.
  • 10YanS,Wu G.Predictionof Michaelis-Mentencon-stantofcellulasesusingneuralnetwork[C].Proceed-ingsofthe2012InternationalSymposium on Ad-vancedBiologicalEngineering (ISABE’2012):92-93.October25-29,2012,Guilin,China.

二级参考文献20

  • 1孙晓云,王小生.α-淀粉酶对面包品质的影响[J].食品工业科技,2005,26(11):65-67. 被引量:24
  • 2Gupta R,Gigas P,Mohapatra H,et al.Microbialα-amylases:a biotechnological perspective[J].Process Biochemistry,2003,11(38):.1599-1616
  • 3Pandey A,Nigam P,Soccol C R,et al.Advances in microbial amylases[J].Biotechnol Appl Biochem,2000,31:135-152
  • 4Vihinen M,Mantsala P.Microbial amylolytic enzymes[J].Crit Rev Biochem Mol Biol,1989,24:329-418
  • 5Ogasahara K,Inanishi A,Isemura T.Studies on thermophilic α-amylase from Bacillus stearothermophilus.I.Some general and physicochemical properties of thermophilicα-amylase[J].J Biochem,1970,67:65.
  • 6Chary S J,Reddy S M.Starch degrading enzymes of two species of Fusarium[J].Folia Microbiol,1985,30:452
  • 7Mamo G,Gashe B A,Gessesse A.A highly thermostable amylase from a newly isolated thermophillic Bacillus sp.WN11[J].J Appl Microbiol,1999(86):557-560
  • 8Kundu A K,Das S.Production of amylase in liquid culture by a strain of Aspergillus oryzae[J].J Appl Microbiol 1970(19):598.
  • 9Laderman K A,Davis B R,Krutzsch HC,et al.The purification and characterization of an extremely thermostable α-amylase from hypothermophilic archaebacterium Pyrococcus firious[J].J BioChem,1993(24):394-401
  • 10YaoWeiRong,Yao HuiYuan.Adsorbent Characteristics of Porous Starch[J].Starch,2002,6 (54):260-263

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部