期刊文献+

动力钳开口齿轮组结构优化设计与模态分析 被引量:1

Structure Optimization Design and Modal Analysis of the Power Tong Notched Gears
下载PDF
导出
摘要 开口齿轮是钻杆动力钳钳头部分的重要传动部件。目前,开口齿轮组的结构设计方法单一,造成体积较大。针对开口齿轮组的结构与布局,通过选取合适的结构参数作为输入变量,依据齿轮啮合条件和接触、弯曲疲劳强度等构造约束条件,以总体尺寸为优化目标,采用改进的粒子群算法(PSO)对开口齿轮组进行结构优化设计。分别将优化前后结构建模并导入ANSYS Workbench,通过模态分析对优化结果进一步论证。结果表明:采用改进PSO方法优化后的模型体积更小,同时各阶固有频率得到提高,说明该方法能够有效指导钻杆动力钳的开口齿轮结构设计,具有良好的工程应用价值。 The notched gears are important transmission components of the drill pipe power tongs, but currently the methods for notched gear optimization are simple and there are no proper opti-mization methods.The improved PSO algorithm was used to optimize the design of the notched gear structure.The appropriate structure parameters were selected as input variables,and con-straint conditions were built according to gear condition and bending fatigue strength etc.The op-timization design was based on the overall size of the target.The models before and after optimi-zation of notched gear were imported into ANSYS workbench for modal analysis,and the results illustrate that the optimized model is smaller and enhanced structurally,and the natural frequen-cies of the model is improved.The results can be concluded that the optimization method based on improved PSO can be considered as a valuable reference for the optimization design of notched gears and is with good engineering value.
作者 刘志刚
出处 《石油矿场机械》 2014年第12期26-30,87,共6页 Oil Field Equipment
关键词 钻杆动力钳 开口齿轮 结构优化 模态分析 drill pipe power tong notched gear structure optimization design modal analysis
  • 相关文献

参考文献7

二级参考文献38

  • 1张义民,刘巧伶,闻邦椿.汽车零部件可靠性灵敏度计算和分析[J].中国机械工程,2005,16(11):1026-1029. 被引量:32
  • 2刘寒冰,秦绪喜,王书娟,谭国金.结构参数小幅变化后桥梁固有模态修正的矩阵摄动法[J].土木工程学报,2006,39(4):32-34. 被引量:5
  • 3杨敏嘉.动力钳钳口齿轮传动的安装条件[J].石油钻采机械通讯,1977,44:28-34.
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks,Perth,Australia,IEEE Service Center.Piscataway, NJ: IEEE Press, 1995 : 1942-1948.
  • 5Eberhart R C,Dobbins R W,Simpson P K.Computational intelligence PC tools[M].Boston:Academic Press, 1996.
  • 6Eberhart R C,Kennedy J.A New optimizer using particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.Piscataway, NJ:IEEE Service Center. 1995 : 39-43.
  • 7Kennedy J.The particle swarm: Social adaptation of knowledge[C]// Proc IEEE International Conference on Evolutionary Computation, Indianapolis, Indiana.Piscataway, NJ : IEEE Service Center, 1997 :303-308.
  • 8Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proc of the IEEE Int'l Conf of Evolutionary Computation.Piscataway: IEEE Press, 1998:69-73.
  • 9Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierachical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Trans on Evolutionary Computation,2004,8(3): 240-255.
  • 10Sun Jun, Feng Bin, Xu Wen-bo.Particle swarm optimization with particles having quantum behavior[C]//Proc of Congress on Evolutionary Computation.[S.l.] : IEEE Press, 2004: 325-331.

共引文献70

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部