摘要
为了提高径向基函数(RBF)神经网络的预测性能,文章提出改进的差分进化算法(IDE),通过引入混合变异策略和局部算子来增强算法的收敛速率和局部搜索能力,用改进的差分进化算法对径向基函数神经网络的网络结构参数进行优化,建立了IDE-RBF神经网络股指预测模型,并以上证综指为例进行了实证分析。实证结果表明,IDE-RBF神经网络的预测效果明显优于其他预测模型。
To improve the forecasting performance of radial basis function (RBF) neural network ,an improved differential evolution (IDE) algorithm is proposed by introducing the hybrid‐mutation strate‐gy and the local operator ,w hich greatly enhance the convergence rate and the ability of local search of the algorithm .Then the IDE algorithm is used to optimize the parameters of the structure of the RBF neural network and an IDE‐RBF stock index forecasting model is built .Finally ,an empirical analysis is conducted by using Shanghai Composite Index .The empirical results show that the IDE‐RBF neural network performs better than other forecasting models .
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第11期1397-1401,共5页
Journal of Hefei University of Technology:Natural Science
关键词
股指预测
改进差分进化算法
RB
F神经网络
混合变异策略
局部算子
stock index forecasting
improved differential evolution (IDE ) algorithm
radical basis function(RBF) neural network
hybrid-mutation strategy
local operator