期刊文献+

基于Kinect的特定人员鲁棒识别与定位 被引量:2

Robust recognition and localization of specific persons using kinect
下载PDF
导出
摘要 为避免人机共处时相撞,提出了一种基于Kinect视觉的特定人员识别与定位方法.利用Kinect传感器深度图像中的用户索引位信息、同步的彩色图像与深度图像的对应关系,滤除彩色图像中的复杂背景,确定感兴趣目标区域.进而在彩色图像内,基于加速鲁棒特征算法(SURF)在连续帧间完成特征匹配,快速识别特定目标人员;在深度图像内,采用无迹卡尔曼滤波(UKF)实现了在摄像机坐标系内的人员定位.实验结果验证了算法的鲁棒性,表明算法能够适应光线变化、目标再入和部分遮挡等情况. A Kinect-based person recognition and localization method is proposed to avoid collisions during the co-extstence of human and robots. Firstly, by using the player index data in Kinect depth images and the correspondence between synchronized depth and RGB images, the background in RGB image is rejected to attain the interest target area. Secondly, Speeded-Up Robust Features (SURF) algorithm is used to detect features rapidly in sequential RGB images and then recognize the specific person. Finally, the person's position is estimated using Unscented Kalman Filter (UKF). Experiential results verify the algorithm robustness and show that the method can adapt to those cases of light changing, target re-entering and partial occlusion.
出处 《河北工业大学学报》 CAS 北大核心 2014年第5期1-7,共7页 Journal of Hebei University of Technology
基金 国家自然科学基金(61203275) 河北省自然科学基金(F2013202101 F2012202100) 河北省科技支撑计划指导项目(13211827)
关键词 人员识别 Kinect相机 加速鲁棒特征 无迹卡尔曼滤波 定位 person recognition kinect camera speeded-up robust features unscented kalman filter localization
  • 相关文献

参考文献13

  • 1Goodrich M A, Schultz A C. Human-robot interaction: a survey [J]. Foundations and trends in human-computer interaction, 2007, 1 (3) : 203-275.
  • 2Han J G, Shao k, Xu D, et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review [J]. IEEE Transactions on Cybernetics, 2013, 43 (5): 1318-1334.
  • 3Xia L, Chert C C, Aggarwal J K. Human detection using depth information by Kinect [C] //Proceedings of2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society, 2011: 15-22.
  • 4Machida E, Cao M, Murao T, et al. Human motion tracking of mobile robot with Kinect 3D sensor [C] //Proceedings oflEEE 2012 SICE Annual Conference. SICE, 2012: 2207-2211.
  • 5Chen Y, Ji Z C, Hua C J. 3-D model matching based on distributed estimation algorithm [C] //Proceedings of 2009 Chinese Control and Decision Conference. IEEE Computer Society, 2009: 5063-5067.
  • 6Schiele B, Crowley J L. Recognition without correspondence using multidimensional receptive field histograms [J]. International Journal of Computer Vision, 2000, 36 (1): 31-50.
  • 7Pontil M, Verri A. Support vector machines for 3D object recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (6): 637-646.
  • 8Roth D, Yang M H, Ahuja N. Learning to recognize three-dimensional objects [J]. Neural Computation, 2002, 14 (5): 1071-1103.
  • 9Lowe D G. Object recognition from local scale-invariant features [C] //Proceedings of the 7th IEEE International Conference on Computer Vision. IEEE, 1999, 2: 1150-1157.
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60 (2) : 91-110.

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部