期刊文献+

基于改进各向异性扩散冲击滤波器模型的图像去噪 被引量:1

A modified anisotropic diffusion with shock filter model for image denoising
下载PDF
导出
摘要 针对各向异性扩散冲击滤波器(ADSF)在图像增强中对噪声敏感的问题,将梯度矢量流(GVF)引入到ADSF中,提出一种新的图像去噪方法 GVF-ADSF。在改进的GVF-ADSF方法中,通过引入曲率差来区分图像的特征区域,并定义一个加权系数来控制滤波器中2个扩散项在图像的边缘区域和平坦区域的扩散程度,使得图像区域之间能够自然的平滑过渡。通过实验对比本文方法与均值滤波、Perona and Mailk(PM)模型、ADSF模型的去噪性能,结果表明所提方法能很好地去除图像噪声并保留图像丰富的纹理细节,得到更高的信噪比。 To overcome the noise sensitivity problem of the anisotropic diffusion with shock filter(ADSF) in image enhancement, a novel image denoising method was presented, which incorporates gradient vector flow(GVF) into the ADSF model. In the modified ADSF method called GVF-ADSF, the curvature difference was employed to distinguish the image region characteristics, and a weighted coefficient is defined to control the diffusion level of the two filter diffusion terms between the edge area and the flat region. Hence, the image transition area can be naturally smoothed. The denoising performance of the GVF-ADSF method was compared with that of the mean filter, the Perona and Mailk(PM) model, and the conventional ADSF model. The experimental results indicate that the GVF-ADSF method can effectively remove the image noise and retain the image texture better. In addition, the proposed method can get higher the ratio of signal to noise.
作者 黄淑英 杨勇
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第9期3061-3067,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61262034) 教育部科学技术研究重点项目(211087) 江西省自然科学基金资助项目(20114BAB211020 20132BAB201025) 江西省青年科学家培养对象资助项目(20122BCB23017) 江西省教育厅科技项目(GJJ13302)
关键词 各向异性扩散冲击滤波器 梯度矢量流 图像去噪 曲率差 anisotropic diffusion with shock filter gradient vector flow image denoising curvature difference
  • 相关文献

参考文献17

  • 1Chen Q, Montesinos P, Sun Q S, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298-306.
  • 2陈利霞,冯象初,王卫卫,宋国乡.加权变分的图像去噪算法[J].系统工程与电子技术,2010,32(2):392-395. 被引量:21
  • 3何坤,琚生根,林涛,张卫华.TV数值计算的图像去噪[J].电子科技大学学报,2013,42(3):459-463. 被引量:9
  • 4QIU Zhen, YANG Lei, LU Weiping. A new feature-preserving nonlinear anisotropie diffusion for denoising images containing blobs and ridges[J]. Pattern Recognition Letters, 2012, 33(3): 319-330.
  • 5Hajiaboli M R. An anisotropic fourth-order diffusion filter for image noise removal[J]. International Journal of Computer Vision, 2011, 92(2): 177-191.
  • 6高朝邦,周激流.基于四元数分数阶方向微分的图像增强[J].自动化学报,2011,37(2):150-159. 被引量:32
  • 7Li H C, Fan P Z, Khan M K. Context-adaptive anisotropic diffusion for image denoising[J]. Electronics Letters, 2012, 48(14): 827-829.
  • 8WANG Yi, NIU Ruiqing, ZHANG Liangpei, et al. Region-based adaptive anisotropic diffusion for image enhancement and denoising[J]. Optical Engineering, 2010, 49(11): 117007.
  • 9Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
  • 10Osher S, Rudin L I. Feature-oriented image enhancement using shock filters[J]. SIAM Journal on Numerical Analysis, 1990, 27(4): 919-940.

二级参考文献38

  • 1杨维,余斌霄,宋国乡.基于变分问题和广义软阈值的图像去噪[J].系统工程与电子技术,2005,27(11):1855-1857. 被引量:5
  • 2吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 3姜东焕,徐光宝,宋国乡.基于小波和变分泛函的图像分解[J].系统工程与电子技术,2007,29(6):848-851. 被引量:1
  • 4Xu Chenyang, Prince J L. Snakes, shapes, and gradient vector flow [ J ]. IEEE Transactions on Image Processing, 1998,7 (3) : 359-369.
  • 5Liang Jia, Ding Guangyi, Wu Yuwei, et al. Segmentation of the left ventricle from cardiac MR images based on radial GVF snake [C]//International Conference on BioMedical Engineering and Informatics. Washington DC, USA :IEEE Press, 2008:238-242.
  • 6Liu F, Kijewski P K. Liver segmentation for CT images using GVF Snake [J]. Journal of Medical Physics, 2005, 32( 12): 3699 -3706.
  • 7Kass M, Witkin A, Terzopoulos D, et al. Snakes: active contour models [J].Proceeding of International Journal of Computer Vision, 1988, 1(4):321-331.
  • 8Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation [J]. CVGIP : Image Understanding, 1992, 55(1) :14-26.
  • 9冯象初,江玲玲,殷海青.一种半离散的非线性图像增强方法[J].系统工程与电子技术,2007,29(9):1559-1563. 被引量:3
  • 10AL-AMRI S S, KALYANKAR N V, KHAMITKAR S D. A comparative study of removal noise from remote sensing image[J]. International Journal of Computer Science Issues, 2010, 7(1): 32-36.

共引文献69

同被引文献1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部