期刊文献+

Corrosion Behavior of Ni–20Cr–18W–1Mo Superalloy in Supercritical Water

Corrosion Behavior of Ni–20Cr–18W–1Mo Superalloy in Supercritical Water
原文传递
导出
摘要 The corrosion behavior of Ni–20Cr–18 W–1Mo superalloy in supercritical water 500 °C/25 MPa for 200 h is investigated using gravimetry, SEM/EDS, XPS, and TEM. The oxide films show a layered structure with Ni rich in the outer layer, and Cr rich in the inner layer, consisting of an outer Ni(OH)2and NiO layer, including some Cr(OH)3, and an inner Cr2O3, Ni Cr2O4, and WO3 layer. Mo elements are not oxidized. The oxide films grow via a mixed mechanism,namely metal dissolution/oxide precipitation mechanism and solid-state growth mechanism. The effects of secondary and primary carbides on the weight-gain trend and oxide formation are discussed. The corrosion behavior of Ni–20Cr–18 W–1Mo superalloy in supercritical water 500 °C/25 MPa for 200 h is investigated using gravimetry, SEM/EDS, XPS, and TEM. The oxide films show a layered structure with Ni rich in the outer layer, and Cr rich in the inner layer, consisting of an outer Ni(OH)2and NiO layer, including some Cr(OH)3, and an inner Cr2O3, Ni Cr2O4, and WO3 layer. Mo elements are not oxidized. The oxide films grow via a mixed mechanism,namely metal dissolution/oxide precipitation mechanism and solid-state growth mechanism. The effects of secondary and primary carbides on the weight-gain trend and oxide formation are discussed.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1046-1056,共11页 金属学报(英文版)
基金 financial support from the project supported by Research Fund of the State Key Laboratory of Solidification Processing, China (No. 62-TP-2011) 111 project (No. B08040)
关键词 Ni–20Cr–18 W–1Mo Corrosion behavior Corrosion mechanism Supercritical water Oxide film Ni–20Cr–18 W–1Mo Corrosion behavior Corrosion mechanism Supercritical water Oxide film
  • 相关文献

参考文献37

  • 1G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, J. Nucl. Mater. 371, 176 (2007).
  • 2C. Sun, R. Hui, W. Qu, S. Yick, Corros. Sci. gl, 2508 (2009).
  • 3Q. Zhang, R. Tang, K. Yin, X. Luo, L.F. Zhang, Corros. Sci. 51, 2092 (2009).
  • 4L. Tan, X. Ren, K. Sridharan, T.R. Allen, Corros. Sci. g0, 3056 (2008).
  • 5M. CasaIes, V.M. Salinas-Bravo, A. Martinez-Villafafie, J.G. Gonzalez-Rodriguez, Mater. Sci. Eng. A 332, 223 (2002).
  • 6T. Angeliu, G. Was, Mater. Trans. A 21, 2097 (1990).
  • 7G. Sui, J.M. Titchmarsh, G.B. Heys, J. Congleton, Corros. Sci. 39, 565 (1997).
  • 8Y.S. Lira, H.P. Kim, J.H. Hart, J.S. Kim, H.S. Kwon, Corros. Sci. 43, 1321 (2001).
  • 9Y. Lira, J. Sub, J. Kim, I. Kuk, Mater. Trans. A 28, 1223 (1997).
  • 10Y.S. Lira, J.S. Kim, H.S. Kwon, J. Nucl. Mater. 336, 65 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部