摘要
Priority Areas of Biodiversity Conservation(PABCs) are the key areas for future biodiversity conservation in China. In this study, we used 5 dynamic global vegetation models(DGVMs) to simulate the ecosystem function changes under future climate change scenario in the 32 terrestrial PABCs. We selected vegetation coverage,vegetation productivity, and ecosystem carbon balance as the indicators to describe the ecosystem function changes.The results indicate that woody vegetation coverage will greatly increase in the Loess Plateau Region, the North China Plain, and the Lower Hilly Region of South China.The future climate change will have great impact on the original vegetation in alpine meadow and arid and semiarid regions. The vegetation productivity of most PABCs will enhance in the coming 100 years. The largest increment will take place in the southwestern regions with high elevation. The PABCs in the Desert Region of InnerMongolia-Xinjiang Plateau are with fastest productivity climbing, and these areas are also with more carbon sink accumulation in the future. DGVM will be a new efficient tool for evaluating ecosystem function changes in future in large scale. This study is expected to provide technical support for the future ecosystem management and biodiversity conservation under climate change.
Priority Areas of Biodiversity Conservation (PABCs) are the key areas for future biodiversity conservation in China. In this study, we used 5 dynamic global vegetation models (DGVMs) to simulate the ecosystem function changes under future climate change scenario in the 32 terrestrial PABCs. We selected vegetation coverage, vegetation productivity, and ecosystem carbon balance as the indicators to describe the ecosystem function changes. The results indicate that woody vegetation coverage will greatly increase in the Loess Plateau Region, the North China Plain, and the Lower Hilly Region of South China. The future climate change will have great impact on the original vegetation in alpine meadow and arid and semiarid regions. The vegetation productivity of most PABCs will enhance in the coming 100 years. The largest increment will take place in the southwestern regions with high elevation. The PABCs in the Desert Region of Inner Mongolia-Xinjiang Plateau are with fastest productivity climbing, and these areas are also with more carbon sink accumulation in the future. DGVM will be a new efficient tool for evaluating ecosystem function changes in future in large scale. This study is expected to provide technical support for the future ecosystem management and biodiversity conservation under climate change.
基金
supported by the Environmental Protection Public Service Project of China(201209031)