期刊文献+

黄芩甙元和槲皮黄酮对牙本质胶原耐酶解能力的影响 被引量:2

Effect of baicalein and quercetin on enzymatic resistance of dentin collagen
原文传递
导出
摘要 目的 评估黄芩甙元和槲皮黄酮对牙本质胶原耐酶解能力的影响,为寻找理想的牙本质粘接预处理剂提供实验基础.方法 黄芩甙元、槲皮黄酮及原花色素以20%二甲基亚砜乙醇溶液作为溶剂,配制成质量浓度为50 g/L的预处理剂,制备脱矿牙本质试件(黄芩甙元组、槲皮黄酮组及原花色素组,每组19个试件).37℃下预处理剂孵育24 h后,于酶解液中(含Ⅰ型胶原酶)进行消化.空白对照组和阴性对照组(每组19个试件)以20%二甲基亚砜乙醇溶液作为预处理剂,空白对照组所用酶解液不含Ⅰ型胶原酶.分别测试酶解24 h后各组试件的极限拉伸强度(每组10个试件)及酶解液羟脯氨酸含量(每组6个试件),场发射扫描电镜观察酶解12h后牙本质胶原形貌(每组3个试件).结果 酶解24 h后,黄芩甙元组极限拉伸强度最高[(16.00±1.31) MPa],其次为原花色素组[(12.64±0.91) MPa]、空白对照组[(7.84±1.18) MPa]、槲皮黄酮组[(3.20±1.07) MPa]、阴性对照组(0 MPa),各组间差异均有统计学意义(P<0.01).空白对照组酶解液羟脯氨酸含量最低[(0.40±0.16) mg/L],其次为黄芩甙元组[(2.95±0.18) mg/L]、原花色素组[(4.78±0.38 mg/L]、槲皮黄酮组[(28.22± 1.53) mg/L]、阴性对照组[(34.39±0.39) mg/L],各组间差异均有统计学意义(P<0.01).酶解12h后场发射扫描电镜显示空白对照组牙本质胶原网络完整;阴性对照组胶原网络完全断裂塌陷;槲皮黄酮组大部分胶原被降解;原花色素组仅少量胶原断裂塌陷;黄芩甙元组胶原网络基本维持完整.结论 50 g/L黄芩甙元和槲皮黄酮均可提高牙本质胶原的耐酶解能力,其中黄芩甙元作用优于原花色素,槲皮黄酮作用弱于原花色素. Objective To investigate the effect of baicalein and quercetin on the enzymatic resistance of dentin matrix collagen.Methods Baicalein,quercetin and proanthocyanidin were dissolved in 20% dimethyl sulfoxide (DMSO) ethanol and prepared into pretreatment agents with a concentration of 50 g/L.Demineralized dentin specimens were prepared and immersed in pretreatment agents at 37 ℃ for 24 h,then they were digested in solution containing type Ⅰ collagenase.The pretreatment agents of blank control group and negative control group were 20% DMSO ethanol,blank control group were digested in solution without collagenase.The ultimate tensile strength (UTS) and the hydroxyproline content of enzymolysis liquid in each group were measured respectively after collagenase digestion for 24 h,the dentin collagen morphology were observed under a field emission scanning electron microscopic (FE-SEM) after collagenase digestion for 12 h.Results After collagenase digestion for 24 h,the baicalein group had the highest UTS [(16.00 ± 1.31) MPa],followed by proanthocyanidin group [(12.64 ± 0.91) MPa],blank control group [(7.84± 1.18) MPa],quercetin group [(3.20± 1.07) MPa],and negative control group (0 MPa).Significant differences were detected among the UTS in each two group (P<0.01).The hydroxyproline content in blank control group was the lowest [(0.40 ± 0.16) mg/L],followed by baicalein group[(2.95 ± 0.18) mg/L],proanthocyanidin group [(4.78±0.38) mg/L],quercetin group[(28.22± 1.53) mg/L],and negative control group [(34.39±0.39) mg/L].There were significant differences among the hydroxyproline contents in each group (P< 0.01).After collagenase digestion for 12 h,intact collagen network could be seen in blank control group under a FE-SEM.Collagen network in negative control group suffered nearly complete destruction and collapsed.In quercetin group,most of collagen collapsed.In proanthocyanidin group,a small portion of collagen destruction and collapse could be seen.In baicalein group,collagen network remained intact.Conclusions The use of baicalein and quercetin could improve enzymatic resistance of dentin matrix collagen at a concentration of 50 g/L.The effect of baicalein was better than that of proanthocyanidin while the effect of quercetin was weaker than that of proanthocyanidin.
出处 《中华口腔医学杂志》 CAS CSCD 北大核心 2014年第11期667-671,共5页 Chinese Journal of Stomatology
基金 广东省科技计划(2011B061300088)
关键词 原花青素类 槲皮素 胶原 黄芩甙元 Proanthocyanidins Quercetin Collagen Baicalein
  • 相关文献

参考文献25

  • 1De Munck J, Van Landuyt K, Peumans M, et al. A criticalreview of the durability of adhesion to tooth tissue: methods and results[J]. J Dent Res,2005,84(2): 118-132.
  • 2Breschi L, Mazzoni A, Ruggeri A, et al. Dental adhesion review: aging and stability of the bonded interface[J]. Dent Mater, 2008, 24(1): 90-101.
  • 3Fang M, Liu R, Xiao Y, et al. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds[J]. J Dent, 2012,40(6): 458-466.
  • 4Frazier IRA, Deaville ER, Green RJ, et al. Interactions of tea tannins and condensed tannins with proteins[J]. J Pharm Biomed Anal,2010,51 (2): 490-495.
  • 5Bedran-Russo AK, Castellan CS, Shinohara MS, et al. Characterization of biomodified dentin matrices for potential preventive and reparative therapies[J]. Acta Biomater, 2011, 7(4): 1735-1741.
  • 6Hiraishi N, Sono R, Sofiqul I, et al. In vitro evaluation of plant-derived agents to preserve dentin collagen[J]. Dent Mater, 2013,29( 10): 1048-1054.
  • 7Castellan CS, Pereira PN, Grande RH, et al. Mechanical characterization of proanthoeyanidin-dentin matrix interaction [J]. Dent Mater,2010,26( 10): 968-973.
  • 8Zhai W, Lti X, Chang J, et al. Quereetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility[J]. Acta Biomater, 2010, 6(2): 389-395.
  • 9Sartor L, Pezzato E, Dell'Aica I, et al. Inhibition of matrix-proteases by polypbenols: chemical insights for anti-inflammatory and anti-invasion drug design[J]. Biochem Pharmacol, 2002,64( 2 ): 229-237.
  • 10Hashimoto M. A review: micromorphological evidence of degradation in resin-dentin bonds and potential preventional solutions[J]. J Biomed Mater Res B Appl Biomater, 2010, 92( 1 ): 268-280.

二级参考文献21

  • 1黄翠,程祥荣.牙本质粘接剂的回顾、现状和展望[J].中华口腔医学杂志,2006,41(11):700-701. 被引量:16
  • 2Breschi L, Mazzoni A, Ruggeri A, et al. Dental adhesion review: aging and stability of the bonded interface. Dent Mater, 2008, 24(1) : 90-101.
  • 3Hashimoto M, Ohno H, Kaga M, et al. In vivo degradation of resin-dentin bends in humans over I to 3 years. J Dent Res, 2000, 79(6) : 1385-1391.
  • 4Hashimoto M, Ohno H, Sano H, et al. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials, 2003, 24(21 ) : 3795-3803.
  • 5Liu Y, Tjaderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res, 20ll, 90(8) : 953-968.
  • 6Tersariol IL, Geraldeli S, Minciotti CL, et al. Cysteine cathepsins in human dentin-pulp complex. J Endod, 2010, 36 ( 3 ) : 475-481.
  • 7Nascimento FD, Minciotti CL, Geraldeli S, et al. Cysteine cathepsins in human carious dentin. J Dent Res, 2011, 90(4) : 506-511.
  • 8Hashimoto M. A review : micromorphological evidence of degradation in resin-dentin bonds and potential preventional solutions. J Biomed Mater Res B Appl Biomater, 2010, 92 ( 1 ) : 268-280.
  • 9Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit Rev Oral Biol Med, 2002, 13 (3): 238-275.
  • 10Obermajer N, Jevnikar Z, Doljak B, et al. Role of cysteine cathepsins in matrix degradation and cell signalling. Connect Tissue Res, 2008, 49(3) : 193-196.

共引文献12

同被引文献28

  • 1Takahashi M, Nakajima M, Tagami J, et al. The importance of size- exclusion characteristics of type I collagen in bonding to dentin matrices[J]. Acta Biomater, 2013, 9(12): 9522- 9528. DOl: 10.1 016/j .actbio.2013.07 .037.
  • 2Sano H, Takatsu T, Ciucchi B, et al, Nanoleakage: leakage within the hybrid layer[J]. Oper Dent, 1995, 20(1): 18-25.
  • 3Sauro S, Mannocci F, Toledano M, et al. Influence of the hydrostatic pulpal pressure on droplets formation in current etch- and- rinse and self- etch adhesives: a video ratelTSM microscopy and fluid filtration study[J]. Dent Mater, 2009, 25 (11): 1392-1402.001: 1O.1016/j.dental.2009.06.01O.
  • 4Li Y, Thula TT, Jee S, et al. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links [J]. Biomacromolecules, 2012, 13(1): 49- 59. 001: 10.10211 bm201070g.
  • 5Dall'Orologio GO, Ishihara H, Finger WJ, et al. In vitro and in vivo evaluation of the effectiveness of three dentin desensitizing treatment regimens[J]. Am J Dent, 2014, 27(3): 139-144,.
  • 6Vidal CM, Aguiar TR, Phansalkar R, et al. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins[J]. Acta Biomater, 2014, 10(7): 3288- 3294. DOl: 10.10 16/j.actbio.20 14.03.036.
  • 7Liu Y, Bai X, Li S, et al. Molecular weight and galloylation affect grape seed extract constituents' ability to cross- link dentin collagen in clinically relevant time[J]. Dent Mater, 2015,31(7): 814-821. 001: 1O.1016/j.dentaI.2015.04.006.
  • 8Sauro S, Pashley DH, Montanari M, et al. Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives[J]. Dent Mater, 2007, 23(6): 705-713. 001: 10.10 16/j.dentaI.2006.06.0 10.
  • 9Hope CK, Griffiths DA, Prior OM. Finding an alternative to formalin for sterilization of extracted teeth for teaching purposes[J]. J Dent Educ, 2013, 77(1): 68-71.
  • 10Taha NA, Palamara JE, Messer HH. Assessment of laminate technique using glass ionomer and resin composite for restoration of root filled teeth[J]. J Dent, 2012, 40(8): 617-623. 001: 10.10 16/j .jdent.20 12.04.006.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部