期刊文献+

低剂量γ射线照射对人淋巴母细胞蛋白表达的影响

Effects of low dose γ-ray on protein expression of human lymphoblastoid cells
原文传递
导出
摘要 目的为探讨低剂量电离辐射生物效应作用机制,研究不同剂量单次照射后,人淋巴母细胞蛋白表达的变化。方法利用双向凝胶电泳和基质辅助激光解析飞行时间串联质谱技术分离、鉴定不同低剂量γ射线导致的人淋巴母细胞差异表达蛋白,采用实时荧光定量PCR法从mRNA水平验证蛋白的差异表达。结果不同低剂量叮射线照射后,双向电泳和质谱分离鉴定得到3个差异表达点:真核翻译起始因子5A(eIF5A),前折叠素亚单位1(PFDN1),脂肪酸结合蛋白4(FABP4)。其中,eIF5A和FABP4的mRNA水平表达变化与双向电泳结果一致。结论低剂量1射线导致人淋巴母细胞中eIF5A、PFDNl和FABP4等蛋白表达发生变化,差异表达的蛋白有助于阐明低剂量辐射生物效应作用机制,并为进一步研究低剂量辐射暴露的生物标志物提供了参考。 Objective To observe the alterations of protein expression in human normal lymphoblastoid cell AHH-1 lines, after irradiation with different doses of γ-rays, in order to investigate mechanisms of biological effects induced by low dose radiation. Methods Two-dimensional electrophoresis (2-DE) was performed and differential expression proteins were identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MAIDI-TOF-MS) after irradiation. The mRNA expressions of proteins were analyzed by real-time quantity PCR (RTQ-PCR). Results Using 2-DE and MAIDI-TOF-MS, 3 kinds of ahered proteins were definite in terms of eukaryotic translation initiation factor 5A (eIFSA) , profoldin subunit 1 ( PFDN1 ) and fatty acid binding protein 4 (FABP4). The mRNA expressions of eIFSA and FABP4 were coincided with protein expressions. Conclusions These differentially expressed proteins induced by low-doses of γ-rays will help to elucidate the mechanisms of biological effects at low doses and offer the reference for further research of novel biomarkers for low dose exposure.
机构地区 海军医学研究所
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2014年第11期832-836,共5页 Chinese Journal of Radiological Medicine and Protection
基金 全军计划科研项目(AHJ09J012) 总后“十一五”科技攻关项目(2009183006).
关键词 低剂量 双向电泳 实时荧光定量PCR 真核翻译起始因子5A 脂肪酸结 合蛋白4 Low-dose Two-dimensional electrophoresis Real-time PCR Eukaryotictranslation initiation factor 5A Fatty acid binding protein 4
  • 相关文献

参考文献13

  • 1Ivey RG,Subramanian O,Lorentzen TD,et al.Antibody-based screen for ionizing radiation-dependent changes in the mammalian proteome for use in biodosimetry[J].Radiat Res,2009,171:549-561.
  • 2闫桂蕊,张小东,蔡海燕,朱维良,王贺瑶.糖尿病和动脉粥样硬化的潜在靶标——FABP4(aP2)[J].生命科学,2009,21(2):270-275. 被引量:3
  • 3Kolomiytseva IK,Novoselova EG,Kulagina TP,et al.The effect of ionizing radiation on lipid metabolism in lymphoid cells[J].Int J Radiat Biol Relat Stud Phys Chem Med,1987,51 (1):53-58.
  • 4Pikas OB.Fatty acid lipid spectrum in the expired air condensate of persons exposed to moderate-dosage ionizing radiation at the Chernobyl atomic power station[J].Probl Tuberk,2002,(3):48-50.
  • 5Saralidze MA,Kasrashvili MV,Tkhilava NG,et al.Plaferon LB in prevention of radiation-induced changes inlipid metabolism indices and erythrocyte deformability rate[J].Georgian Med News,2005,(119):61-64.
  • 6Howe GR,Zablotska LB,Fix JJ,et al.Buchanan.Analysis of the mortality experience amongst U.S.nuclear power industry workers after chronic low-dose exposure to ionizing radiation[J].Radiat Res,2004,162(5):517-526.
  • 7Jo SK,Seol MA,Park HR,et al.Ionising radiation triggers fat accumulation in white adipose tissue[J].Int J Radiat Biol,2011,87(3):302-310.
  • 8Mitchel RE,Hasu M,Bugden M,et al.Low-dose radiation exposure and atherosclerosis in Apoe-/-mice.Radiation Research,2011,175 (5):665-676.
  • 9Sun Z,Cheng Z,Taylor CA,et al.Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway[J].J Cell Physiol,2010,223(3):798-809.
  • 10Li AL,Li HY,Jin BF,et al.A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis[J].J Biol Chem,2004,279 (47):49251-49258.

二级参考文献52

  • 1Fumhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov, 2008, 7:489-503
  • 2Roden M. Blocking fatty acids' mystery tour: a therapy for metabolic syndrome? Cell Metab, 2007, 6(2): 89-91
  • 3Spiegelman BM, Frank M, Green H. Molecular cloning of mRNA from 3T3 adipocytes. J Biol Chem, 1983, 258(16): 10083-9
  • 4Hunt CR, Ro JH, Dobson DE, et al. Adipocyte P2 gene: developmental expression and homology of Y-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA, 1986, 83(11): 3786-90
  • 5Gillilan RE, Ayers SD, Noy N. Structural basis for activation of fatty acid-binding protein 4. J Mol Biol, 2007, 372(5): 1246-60
  • 6Hertzel AV, Bemlohr DA. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocr Metab, 2000, 11(5): 175-80
  • 7Makowski L, Boord JB, Maeda K, et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med, 2001, 7 (6): 699-705
  • 8Rolph MS, Young TR, Shum BO, et al. Regulation of dendritic cell function and T cell priming by the fatty acidbinding protein AP2. J Immunol, 2006, 177(11): 7794-801
  • 9Hotamisligil GS, Johnson RS, Distel RJ, et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science, 1996, 274(5291): 1377-9
  • 10Uysal KT, Scheja L,Wiesbrock SM, et al. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology, 2000, 141(9): 3388-96

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部