期刊文献+

Three-dimensional Numerical Simulation of the Movement of the Flexible Body under Different Constraints

Three-dimensional Numerical Simulation of the Movement of the Flexible Body under Different Constraints
原文传递
导出
摘要 For the large deformation of the flexible body may cause the fluid grid distortion,which will make the numerical calculation tedious,even to end,the numerical simulation of the flexible body coupling with the fluid is always a tough problem.In this paper,the flexible body is under two kinds of constrained conditions and the ratio of length-diameter is 1:30.The Reynolds number of the airflow is 513,belonging to the area of low Reynolds number.The control equations of the coupling of flexible body with airflow are built and the adaptive grid control method is adopted to conduct the three-dimensional numerical simulation of the movement of the flexible body.The numerical results show that it is possible to simulate the characteristics of the flexible body's movement in the low Reynolds number airflow when the appropriate control equations are modeled and suitable equation-solving method is adopted.Unconstrained flexible body would turn over forward along the airflow's diffusion direction,while constrained flexible body in the flow field will make periodic rotation motion along the axis of the flexible body,and the bending deformation is more obvious than that of unconstrained flexible body.The preliminary three-dimensional numerical simulation can provide references for further research on the characteristics of the yam movement in high Reynolds number airflow.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第6期593-599,共7页 热科学学报(英文版)
基金 supported by Zhejiang Provincial Natural Science Foundation under Grant No.LZ14E050004,LQ12A02002 etc
关键词 fluid-structure interaction numerical simulation flexible body adaptive grid control method 三维数值模拟 旋转运动 柔性体 低雷诺数 控制方程 数值计算 网格控制 计算结果
  • 相关文献

参考文献7

  • 1Satoru Yamamoto, Takaaki Matsuoka, A method for dy- namic simulation of rigid and flexible fibers in a flow field. Journal of Chemical Physics, 1993. 1(98): p.644- 650.
  • 2PEI Zeguang, YU Chongwen, Numerical study on the effect of nozzle pressure and yam delivery speed on the fiber motion in the nozzle of Murata vortex spinning. Journal of Fluids and Structures, 2011. 27(1): p.121- 133.
  • 3De Meulemeester Simon, Puissant Patrick, Van Langen- hove Lieva. Three-dimensional Simulation of the Dy- namic Yarn Behavior on Air-jet Looms. Textile Research Journal, 2009. 18(79): p.1706-1714.
  • 4HAO Jian, ZHU Luoding, A lattice Boltzmann based im- plicit immersed boundary method for fluid-structure in- teraction. Computers and Mathematics with Applications, 2010. 59(2010): p.185-193.
  • 5Ranjith Maniyeri, Sangrno Kang, Numerical study on the rotation of an elastic rod in a viscous fluid using an im- mersed boundary method. Journal of Mechanical Science and Technology, 2012.5(26): p.1515-1522.
  • 6Sawada T., Hisada T., Fluid-Structure Interaction Analy- sis of the Two-Dimensional Flag-in-Wind Problem by an Interface-Tracking ALE Finite Element Method. Com- puters & Fluids, 2007, 36: p.136-146.
  • 7Klaus-Jiirgen Bathe, Hou Zhang., A mesh adaptivity pro- cedure for CFD and fluid-structure interactions. Comput- ers and Structures, 2009. 89:p.604-617.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部