期刊文献+

Vehicle State and Parameter Estimation Based on Dual Unscented Particle Filter Algorithm 被引量:4

Vehicle State and Parameter Estimation Based on Dual Unscented Particle Filter Algorithm
下载PDF
导出
摘要 Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a new estimating method is proposed.First the nonlinear vehicle dynamics system,containing inaccurate model parameters and constant noise,is established.Then a dual unscented particle filter(DUPF)algorithm is proposed.In the algorithm two unscented particle filters run in parallel,states estimation and parameters estimation update each other.The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter(UKF)and dual extended Kalman filter(DEKF),and it also has good capability to revise model parameters. Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system. By studying the defects of the former Kalman filter based estimation method, a new estimating method is proposed. First the nonlinear vehicle dynamics system, containing inaccurate model pa rameters and constant noise, is established. Then a dual unscented particle filter (DUPF) algorithm is proposed. In the algorithm two unscented particle filters run in parallel, states estimation and parameters estimation update each other. The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter (UKF) and dual extended Kalman filter (DEKF), and it also has good capability to revise model parameters.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期568-575,共8页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(10902049) the Chinese Postdoctoral Science Foundation(2012M521073) the Fundamental Research Funds for the Central Universities the Jiangsu Planned Projects for Postdoctoral Research Funds(1302020C) the Nanjing University of Aeronautics and Astronautics Student Innovative Training Program(20120119101535) the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(kfjj201404)
关键词 vehicle dynamics dual unscented particle filter(DUPF) state estimation virtual experiment vehicle dynamics dual unscented particle filter (DUPF) state estimation virtual experiment
  • 相关文献

参考文献13

  • 1Ryu J H.State and parameter estimation for vehicle dynamics control using GPS[D].California:Stanford University,2005.
  • 2Venhovens P J,Naab K.Vehicle dynamics estima tion using Kalman filters[J].Vehicle System Dy namics,1999,32(2):171-184.
  • 3Wenzel T A,Burnham K J,Blundell M V,et al.Kalman filter as a virtual sensor:Applied to automo tive stability systems[J].Transactions of the Institute of Measurement and Control,2007,29(2):95-115.
  • 4Best M C,Newton A P,Tuplin S.The identifying extended Kalman filter:Parametric system identification of a vehicle handling model[J].Proc IMechE,Part K:Journal of Muti-body Dynamics,2007,211(1):87-98.
  • 5Dakhlallah J,Glaser S,Mammar S,et al.Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation[C]//American Control Conference.Seattle,USA:IEEE,2008:4597-4602.
  • 6Cheng Q,Correa-Victorino A,Charara A.A new nonlinear observer using unscented Kalman filter to estimate sideslip angle,lateral tire road forces and tire road friction coefficient[C]//IEEE Intelligent Vehicles Symposium.Baden-Baden,Germany:IEEE,2011:709-714.
  • 7Wan E A,Nelson A T.Kalman filtering and neural networks[M].New York:John Wiley & Sons,2001.
  • 8Melzi S,Sabbioni E.On the vehicle sideslip angle estimation through neural networks:Numerical and experimental results[J].Mechanical Systems and Signal Processing.2011,25(6):2005-2019.
  • 9herouat H,Braci M,Diop S.Vehicle velocity,side slip angles and yaw rate estimation[C]//IEEE International Symposium on Industrial Electronics.Dubrovnik,Croatia:IEEE,2005:349-354.
  • 10施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29

二级参考文献6

  • 1Aleksander Hac, Simpson Melinda D. Estimation of Vehicle Side Slip Angle and Yaw Rate. SAE Paper 2000 - 01 - 0696.
  • 2Matthew Brach R, Brach Raymond M. Modeling Combined Braking and Steering Tire Forces. SAE Paper 2000- 01 -0357.
  • 3Hideaki Sasaki, Takatoshl Nishlmaki. A Side-sllp Angle Estimation Using Neural Network for a Wheeled Vehicle. SAE Paper 2000 - 01- 0695.
  • 4Joost Zuurbier, Paul Bremmer. State Estimation for Integrated Vehicle Dynamics Control. 2002 IV International Meetlng,Paris. 2002.
  • 5Raf Klein, Armin Daiβ, Herberl Eichfeld. Amilock braking System and Vehicle Speed Estimation Using Fuzzy Logic. Fuzzy Application Library of Matlab 6.0,2001.
  • 6Kiencke U, Nielsen L.. Aulomotive Control Systems. Springer-verlag Berlin Heidelberg New York,2000.

共引文献28

同被引文献52

  • 1邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 2CLOVER C L, BERNARD J E. Longitudinal tire dynamics[J]. Vehicle System Dynamics, 1998, 29 (4) : 231-260.
  • 3KIM S, NIKRAVESH P E, GIM G. A two-dimen- sional tire model on uneven roads for vehicle dynamic simulation 1 [J]. Vehicle System Dynamics, 2008, 46(10) : 913-930.
  • 4PAC[JKA H. Tyre and vehicle dynamics[M]. Burl- ington: Elsevier, 2005:75-84.
  • 5PAC[JKA H B, BESSELINK I J M. Magic formula tyre model with transient properties[J]. Vehicle Sys- tem Dynamics, 1997, 27(S1) : 234-249.
  • 6JAGADISH R. A computational investigation of con- tact pressure for a non-pnemautie wheel with a meta- material shear band[D]. Clemson: Clemson Univer- sity, 2010:20-50.
  • 7BEZGAM S. Design and analysis of alternating spoke pair concepts for a non-pneumatic tire with reduced vibration at high speed rolling[D]. Clemson: Clem- son University, 2009 : 15-47.
  • 8THYAGARAJA N, SHANKAR P, FADEL G, et al. Optimizing the shear beam of a non-pneumatic wheel for low rolling resistance[C]//ASME 2011 In- ternational Design Engineering Technical Conferences and Computers and Information in Engineering Con- ference. Washington, DC: American Society of Me- chanical Engineers, 2011: 33-42.
  • 9RHYNE T B, CRON S M. Development of a non-pneumatic wheel[J]. Tire Science and Technology, 2006, 34(3): 150-169.
  • 10Akshay Narasimhan. A computational method for a- nalysis of material properties of a non-pneumatic tire and effects on static load-deflection, vibration, and energy loss from impact rolling over obstacles[D]. Clemson: Clemson University, 2010:24-57.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部