摘要
对于约束优化问题,证明了局部鞍点就是局部最优解,利用泰勒展开公式证明了sharp增广拉格朗日函数在二阶充分性条件下,局部鞍点的存在性,从而保证了原问题和对偶问题的局部最优值相等.
With regard to constrained optimization problem, solution, the existence of local saddle point of sharp-augmented it is proved that local saddle point is local optimal Lagrangian function is proved under the sufficient condition of the second order by Taylor Expansion so that the local optimal value of the primitive problem is ensured to equal to that of dual problem.
出处
《重庆工商大学学报(自然科学版)》
2014年第8期14-16,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
约束优化问题
sharp增广拉格朗日函数
鞍点
二阶充分性条件
constrained optimization problem
sharp-augmented Lagrangian function
saddle point
second-order sufficient condition