期刊文献+

Sharp增广拉格朗日函数的局部鞍点

Local Saddle Point of Sharp-augmented Lagrangian Function
下载PDF
导出
摘要 对于约束优化问题,证明了局部鞍点就是局部最优解,利用泰勒展开公式证明了sharp增广拉格朗日函数在二阶充分性条件下,局部鞍点的存在性,从而保证了原问题和对偶问题的局部最优值相等. With regard to constrained optimization problem, solution, the existence of local saddle point of sharp-augmented it is proved that local saddle point is local optimal Lagrangian function is proved under the sufficient condition of the second order by Taylor Expansion so that the local optimal value of the primitive problem is ensured to equal to that of dual problem.
作者 张斐婓
出处 《重庆工商大学学报(自然科学版)》 2014年第8期14-16,共3页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 约束优化问题 sharp增广拉格朗日函数 鞍点 二阶充分性条件 constrained optimization problem sharp-augmented Lagrangian function saddle point second-order sufficient condition
  • 相关文献

参考文献4

  • 1XU Z K.Local Saddle Points and Convexification for Nonconvex Optimization Problems[J].J Optim Theory Appl,1997 (94):739-746.
  • 2WU H X,LUO H Z.Saddle Points of General Augmented Lagrangians for Constrained Nonconvex Optimization[J].J Glob Optim,2012(53):683-697.
  • 3LIU Q,TANG W M,YANG X M.Properties of Saddle Points for Generalized Augmented Lagrangian[J].Math Meth Oper Res,2009(69):111-124.
  • 4REGINA S.BURACHIK,RAFAIL N,et al.On a Modified Subgradient Algorithm for Dual Problems Via Sharp Augmented Lagrangian[J].Journal of Global Optimization,2006 (34):55-78.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部