期刊文献+

一种求解多目标无约束0-1二次规划问题的文化基因算法

A memetic algorithm for multiobjective unconstrained binary quadratic programming
下载PDF
导出
摘要 针对多目标无约束0-1二次规划问题,提出一种文化基因算法。该算法采用基于分解的多目标演化算法框架,能够获得分布均匀的非占优解;同时,采用一种简单、有效的禁忌搜索,能够利用更多问题相关的信息,获得质量更优的非占优解。该算法在优化的过程中能够动态地平衡多样性与收敛性。实验结果证明该算法能够很好地求解多目标无约束0-1二次规划问题,并且性能优于目前求解该问题较先进的算法。 This paper proposes a memetic algorithm (MA) for multiobjective unconstrained binary quadratic programming problem. In MA, multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework is adopted to obtain well-distributed nondominated solutions. At the same time, More problem-specific knowledge can be extracted by using a simple and effective tabu search (TS), and high-quality solutions can be generated. Therefore, MA can balance the diversity and convergence well during the whole optimization process. Experimental results show that MA outperforms the previous state-of-the-art algorithm for mUBQP cases.
作者 周莹 刘云霞
出处 《深圳信息职业技术学院学报》 2014年第3期1-7,共7页 Journal of Shenzhen Institute of Information Technology
基金 广东省自然科学基金项目(项目编号:S2012010008964) 深圳市科技计划项目(项目编号:JCYJ20120615103057639)
关键词 多目标无约束0—1二次规划问题 文化基因算法 基于分解的多目标演化算法 禁忌搜索算法 multiobjective unconstrained binary quadratic programming memetic algorithm multiobjectiveevolutionary algorithm based on decomposition tabu search
  • 相关文献

参考文献8

  • 1Liefooghe A, Verel S, Hao J K. A hybrid melaheurists for multinbjeetive unconstrained binary quratic programming[J]. Applied Soft Computing, 2014, 16:10-19.
  • 2Zhou Y, Wang J, Yin J. A Directional-biased Tau Search Algorithm for Muhi-objective Unconstrained Binary Quadratic Programming Problem[C].//Proe Six International Conference on Advanced Computational Intelligence (ICACI), Washington, DC, USA: IEEE, 2013, pp. 281-286.
  • 3Zbang Q, Li H. MOEA/D: A mldtiobjeqive evohtionary algorithm based on decomposition[J]. Evolutionary Computation, IEEE Transactions on, 2007, 11 (6): 712-731.
  • 4Wang J, Zhou Y, Yin J. Combining tabu Hopfield network and estimation of distribution for unconstrained binary quadratic programming problem[J]. Expert Systems with Applications, 2011, 38(12): 14870-14881.
  • 5Zitzler E, Tbiele L, Lanmanns M, et al. Performance assessment of muhiobjective optimizers: An analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):117-132.
  • 6Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[M]. //Ewlutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Berlin: Springer, 2002:95-100.
  • 7Derrae J, Care f a S, Molina D, et al. A praelieaI tutorial on the use of nonparametrie .tatistieal tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
  • 8Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary muhiobjeetive optimization[J]. Evolutionary Computation, 2002, [0(3):263-2.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部