摘要
针对多目标无约束0-1二次规划问题,提出一种文化基因算法。该算法采用基于分解的多目标演化算法框架,能够获得分布均匀的非占优解;同时,采用一种简单、有效的禁忌搜索,能够利用更多问题相关的信息,获得质量更优的非占优解。该算法在优化的过程中能够动态地平衡多样性与收敛性。实验结果证明该算法能够很好地求解多目标无约束0-1二次规划问题,并且性能优于目前求解该问题较先进的算法。
This paper proposes a memetic algorithm (MA) for multiobjective unconstrained binary quadratic programming problem. In MA, multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework is adopted to obtain well-distributed nondominated solutions. At the same time, More problem-specific knowledge can be extracted by using a simple and effective tabu search (TS), and high-quality solutions can be generated. Therefore, MA can balance the diversity and convergence well during the whole optimization process. Experimental results show that MA outperforms the previous state-of-the-art algorithm for mUBQP cases.
出处
《深圳信息职业技术学院学报》
2014年第3期1-7,共7页
Journal of Shenzhen Institute of Information Technology
基金
广东省自然科学基金项目(项目编号:S2012010008964)
深圳市科技计划项目(项目编号:JCYJ20120615103057639)