期刊文献+

防护堤对LNG扩散的抑制作用 被引量:6

Inhibitory effect of fending groin on LNG diffusion
原文传递
导出
摘要 除有效容积外,设置高度也是LNG储罐区防护堤设计的关键参数。采用数值模拟技术,对半地下LNG罐池,在不同防护堤高度作用下的LNG液池扩展和LNG低温蒸气扩散行为进行数值模拟,对比分析防护堤高度和罐池底面积对LNG低温蒸气扩散速度、可燃气云隔离距离和云团尺寸的影响。结果表明:增加防护堤高度可以有效减小LNG泄漏后产生的可燃气云体积、尺寸及最大扩散距离,但同时延长了可燃气云的滞留时间,增加燃爆和窒息发生的危险。对于同一种罐池,在液池充分扩展前,可燃气云最大扩散距离与罐池底面积成正比。对于LNG储罐区,可通过提升罐池的防护堤高度减小LNG扩散的安全距离。 In addition to effective capacity, height is a key parameter to design the fending groin for LNG tankfarrn. The liquid pool extension and diffusion behavior in low temperature of semi-underground LNG tank pool are simulated by numerical simulation technique. The impacts of the height of fending groin and the basal area of tank pool on the vapor diffusion velocity at low temperature, the isolation distance of combustible gas clouds and the size of cloud cluster are compared and analyzed. Results have shown that higher fending groin can effectively reduce the volume, size and maximum diffusion distance of combustible gas cloud produced after the LNG leakage while it prolongs the residence time of flammable gas clouds and increases the risk of combustion and suffocation. For the same kind of tank pool, the maximum diffusion distance of the combustible gas cloud is proportional to the basal area of tank pool before the full extension of liquid pool. For the LNG tank farm, it can reduce the safe distance of LNG diffusion by increasing the fending groin height of tank pool.
作者 吴运逸
出处 《油气储运》 CAS 2014年第11期1254-1258,共5页 Oil & Gas Storage and Transportation
基金 中国石油化工股份有限公司科研项目"LNG/CNG加气(母)站安全评估与防护技术研究" 311044
关键词 液化天然气 防护堤 LNG扩散 数值模拟 安全距离 liquefied natural gas, fending groin, LNG diffusion, numerical simulation, safe distance
  • 相关文献

参考文献14

  • 1Lawrence Livermore National Laboratory. LNG vapor barrier verification field trials[R]. Falcon Series Test Data Report 1987, 1990.
  • 2HAVENS J, SPICER T. LNG vapor cloud exclusion zones for spills into impoundments[J]. Process Safety Progress, 2005, 24(3): 181-186.
  • 3NIELSEN M, OTT S. A collection of data from dense gas experiments, Riso-R-845 (EN)[R]. Riso National Laboratory, 1996.
  • 4HAVENS J, SPICER T, SHEPPARD W. Wind tunnel studies of LNG vapor dispersion from impoundments[C]. Houston: AIChE National Spring Meeting, 1997.
  • 5WEBBER D, GAGGER S, IVINGS M. LNG source term models for hazard analysis: A review of the state-of-the-art and an approach to model assessment[R]. Quincy: The Fire Protection Research Foundation, 2009.
  • 6MIKE H, LOUIS G, ANAY L, et al. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water, SAND2004-6258[R]. Albuquerque: Sandia National Laboratories, 2004.
  • 7LUKETA-HANLIN A, KOOPMAN R, ERMAK D. On theapplication of computational fluid dynamics code for liquefied natural gas dispersion[J]. Journal of Hazardous Materials, 2007, 140 (3): 504-517.
  • 8SALVESEN H. NG dispersion modeling from spilled LNG confined in dike, CMR-00-F40018[R]. Bergen: Gexcon, 2001.
  • 9GAVELLI F, BULLISTER E, EKYTOMAA H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials, 2008, 159: 158-168.
  • 10GAVELL1 F, CHERNOVSKY M, BULLISTER E, et al. Validation of a CFD model for vapor dispersion from LNG spills into an impoundment[R]. Houston: AIChE Spring National Meeting, 2007.

同被引文献75

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部