期刊文献+

基于温度场均匀化分析的还原炉底盘结构研究 被引量:2

Analysis of Reduction Furnace Chassis Structure Based on the Homogenization of Temperature Field
原文传递
导出
摘要 主要研究多晶硅还原炉的底盘结构,通过改进底盘冷却液流道形式,以提高在该底盘结构形式下温度场分布的均匀性及底盘结构的安全性。本文研究的底盘结构采用了限制射流直喷喇叭口式冷却流道,在底盘上滑板下表面不易形成气膜隔层,大大降低了底盘滑板的温差应力,提高了底盘结构的安全性。结合大型多晶硅还原炉的研制要求,应用Fluent对多晶硅还原炉底盘的辐射、导热和对流的传热过程进行了传热分析,得出了底盘内部温度场的分布云图,并在此基础上通过ANSYS对多晶硅还原炉底盘进行了热-结构耦合分析,得到了满足强度、刚度条件下结构的最优化。 This paper mainly discusses the development of polycrystalline silicon reduction furnace chassis structure. In order to enhance the uniformity of chassis internal temperature field and the security of chassis structure,we improve the type of chassis internal coolant's flow channel by introducing a new type of flow channel,which is applied for coolant distribution and limiting jet to format directly injection flow pattern. The new structure makes it more difficult to form a gas membrane compartment under the surface of chassis' skateboard. This greatly reduces the thermal stress of the chassis skateboard and improves the security of the chassis structure. Combined with the RD demand of a large-scale polycrystalline silicon reduction furnace,the thermal analysis involved radiation,heat conduction and convection were conducted with software Fluid,using computational fluid dynamics( CFD),and the contours of the chassis internal temperature field were given. The results of the simulation could be used as the temperature boundary condition in the thermal-structure coupling analysis,which could help obtain the optimal solution of structure meeting the requirement of strength and stiffness.
出处 《化学工业与工程》 CAS 2014年第6期59-64,共6页 Chemical Industry and Engineering
基金 天津市自然科学基金资助项目(13JCZDJC27200)
关键词 多晶硅还原炉 底盘 温度场 应力分析 polycrystalline silicon reduction furnace chassis temperature field stress analysis
  • 相关文献

参考文献12

  • 1Despotou E,Fontaine B,Montoro D F. Global marketoutlook for photovoltaic until 2014[ R] . Brussels: Euro-pean Photovoltaic Industry Association, 2010.
  • 2Canizo C Del, Coso G Del, Sinke W C. Crystalline sili-Peak goal [ J ]. Research and Applications, 2009, 17(3) : 199 -209.
  • 3Maycock P D. PV market update[ J]. Renewable Ener-gy World, 2003,6(4) : 84-101.
  • 4Jacgerwaldau A. PV-net: European roadmap for PVR&D[ R]. Brussels: Joint Research Centre, 2004.
  • 5Muller A, Ghosh M , Sonnenschein R. Silicon for photo-voltaic applications [ J ]. Materials Science and Engi-neering: B, 2006,134: 257 -262.
  • 6Pizzini S. Towards solar grade silicon ; Challenges andbenefits for low cost photovoltaics[ J]. Solar Energy Ma-terials and Solar Cells, 2010,94(9) : 1 528 - 1 533.
  • 7Rogol M. Silicon 2010 : Two sports with one name[C]//The 8th Solar Silicon Conference. Stuttgart, 2010.
  • 8梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):34-39. 被引量:163
  • 9Filtvedt W O,Javidi M,holt A,et al. Development offluidized bed reactors for silicon production [ J ]. SolarEnergy Materials and Solar Cells, 2010, 94 ( 12 ):1 980 - 1 995.
  • 10Luque A. Handbook of photovoltaic science and engi-neering [ M]. New York: John Wiley & Sons Inc, 2010.

二级参考文献6

共引文献171

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部