期刊文献+

基于支持向量回归机的自适应差分滤波算法研究 被引量:2

Adaptive Divided Difference Filter Algorithm Based on Support Vector Regression
下载PDF
导出
摘要 针对差分滤波(DDF)算法存在因噪声统计特性与实际不符而导致的滤波精度降低甚至发散的问题,提出了一种基于支持向量回归机的自适应差分滤波(SVRADDF)算法.将测量值的新息协方差与理论协方差之间的差值作为支持向量回归机的输入、输出调节噪声统计特征的自适应因子,实时修正DDF噪声协方差,根据实际噪声变化调整噪声协方差矩阵,从而提高滤波精度.针对水下目标纯方位角跟踪系统的蒙特卡洛仿真实验表明,在相同初始噪声特性条件下,所提出的SVRADDF算法具有较好的估计效果和鲁棒性,估计精度、稳定性及收敛时间等性能明显优于单纯DDF算法. To solve the low filtering accuracy problem of the divided difference filter (DDF) algorithm, this paper proposed an support vector regression based adaptive divided difference filter (SVRADDF) algorithm. The difference between the measurement innovation covariance and theory covariance matrix were used as the adaptive factor of the input and output of the support vector regression machine for real-time correction of the DDF noise covariance and the adjustment of the noise covariance matrix according to the actual noise changes, so as to improve the filter precision. Monte Carlo simulation for underwater target bearing-only tracking systems indicates that, with the same initial noise conditions, the proposed SVRAD- DF algorithm has a better estimation performance and robustness. The accuracy, stability and covergenee time are significantly better than the DDF algorithms.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第7期929-935,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(E091002/50979017) 教育部高等学校博士学科点专项科研基金(20092304110008) 中央高校基本科研业务费专项资金(HEUCFZ 1026) 哈尔滨市科技创新人才(优秀学科带头人)研究专项资金项目(2012RFXXG083)
关键词 差分滤波器 自适应因子 支持向量回归机 蒙特卡洛仿真 水下目标纯方位角跟踪 divided difference filter(DDF) adaptive factor support vector regression(SVR) Monte Carlo simulation underwater target bearing-only tracking
  • 相关文献

参考文献24

  • 1Daum F E.Nonlinear filters: beyond the Kalman filter[J].IEEE AES Systems Magazine,2005,20(8): 57-69.
  • 2BarShalom Y,Kirubarajan T.Estimation with applications to tracking and navigation[M].New York: John Wiley & Sons,2001.
  • 3Simon J,Uhlman,Hugh F.A new approach for filtering nonlinear system[C]∥Proceedings of the American Control Conference.Seattle,Washington,1995: 1628-1632.
  • 4王小旭,赵琳,夏全喜,曹伟,李亮.噪声相关条件下Unscented卡尔曼滤波器设计[J].控制理论与应用,2010,27(10):1362-1368. 被引量:15
  • 5王小旭,赵琳,潘泉,夏全喜,洪伟.基于最小均方误差估计的噪声相关UKF设计[J].控制与决策,2010,25(9):1393-1398. 被引量:7
  • 6王小旭,梁彦,潘泉,赵春晖,李汉舟.带有色量测噪声的非线性系统Unscented卡尔曼滤波器[J].自动化学报,2012,38(6):986-998. 被引量:32
  • 7Leven W F,Lanterman A D.Unscented Kalman filter for multiple target tracking with symmetric measurement equations[J].IEEE Transactions on Automatic Control,2009,54(2): 370-375.
  • 8Kim C,Sakthivel R,Chung W K.Unscented FastSLAM: a robust and efficient solution to the SLAM problem[J].IEEE Transactions On Robotics,2008,24(4): 808-820.
  • 9Ning X L,Fang J C.A new autonomous celestial navigation method for the lunar rover[J].Robotics and Autonomous Systems,2009,57(1): 48-54.
  • 10Kim J S,Shin D R,Serpedin E.Adaptive multiuser receiver with joint channel and time delay estimation of CDMA signals based on the squareroot unscented filter[J].Digital Signal Processing,2009,19(3): 504-520.

二级参考文献29

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:11
  • 4Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
  • 5Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions[R]. London: University of Oxford, 1996.
  • 6Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions[EB/OL]. 1996. http://www.eng.ox.ac.ukL.
  • 7Merwe R V. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[EB/OL]. 2004. http://www.cslu.ogi.edu/.
  • 8Seong Yun Cho, Byung Doo Kim. Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system[J]. Automatica, 2008, 44(8): 2040-2047.
  • 9Kalman R E. A new approach to linear filtering and prediction theory[J]. J of Basic Engineering, 1960, 82(4): 35-46.
  • 10Kalman R E, Bucy R S. New results in linear filtering and prediction theory[J]. J of Basic Engineering, 1961, 83(4): 95-108.

共引文献47

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部