摘要
针对差分滤波(DDF)算法存在因噪声统计特性与实际不符而导致的滤波精度降低甚至发散的问题,提出了一种基于支持向量回归机的自适应差分滤波(SVRADDF)算法.将测量值的新息协方差与理论协方差之间的差值作为支持向量回归机的输入、输出调节噪声统计特征的自适应因子,实时修正DDF噪声协方差,根据实际噪声变化调整噪声协方差矩阵,从而提高滤波精度.针对水下目标纯方位角跟踪系统的蒙特卡洛仿真实验表明,在相同初始噪声特性条件下,所提出的SVRADDF算法具有较好的估计效果和鲁棒性,估计精度、稳定性及收敛时间等性能明显优于单纯DDF算法.
To solve the low filtering accuracy problem of the divided difference filter (DDF) algorithm, this paper proposed an support vector regression based adaptive divided difference filter (SVRADDF) algorithm. The difference between the measurement innovation covariance and theory covariance matrix were used as the adaptive factor of the input and output of the support vector regression machine for real-time correction of the DDF noise covariance and the adjustment of the noise covariance matrix according to the actual noise changes, so as to improve the filter precision. Monte Carlo simulation for underwater target bearing-only tracking systems indicates that, with the same initial noise conditions, the proposed SVRAD- DF algorithm has a better estimation performance and robustness. The accuracy, stability and covergenee time are significantly better than the DDF algorithms.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2014年第7期929-935,共7页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金(E091002/50979017)
教育部高等学校博士学科点专项科研基金(20092304110008)
中央高校基本科研业务费专项资金(HEUCFZ 1026)
哈尔滨市科技创新人才(优秀学科带头人)研究专项资金项目(2012RFXXG083)
关键词
差分滤波器
自适应因子
支持向量回归机
蒙特卡洛仿真
水下目标纯方位角跟踪
divided difference filter(DDF)
adaptive factor
support vector regression(SVR)
Monte Carlo simulation
underwater target bearing-only tracking