期刊文献+

跨越-侧抑制神经网络分析及其应用 被引量:1

Analysis of Span-Lateral Inhibition Neural Network and Its Application
下载PDF
导出
摘要 针对神经网络的结构设计,根据仿生学原理提出一种跨越-侧抑制神经网络(S-LINN).该多层网络结构引入了层内中间抑制神经元的侧向连接以及神经元在多个层内进行的信息传递.通过分析网络的逼近能力证明网络的学习能力,设计基于误差反向传播思想的梯度下降学习算法.通过鲍鱼年龄预测回归问题的仿真实验表明,S-LINN在处理实际回归问题时,不但能够保证较高训练精度,同时可获得更强的泛化能力. A novel neural network model S-LINN was proposed based on the neurons connection and lateral inhibition mechanism in the cortex. Considering the multilayer and span connection of cortex neurons, the model was used to simulate the cerebral cortex structure. The approximation ability was verified throuth the universial approximate analysis. Meanwhile, a supervised algorithm based on the error back-propagation and gradient descent theory was developed to train the network parameters. Simulation results for the abalone age prediction demonstrate that the proposed model can achieve higher accuracy of approximation and generalization with a comparable compact network structure.
作者 杨刚 乔俊飞
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第7期965-970,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金重点项目资助(61034008)
关键词 仿生学 侧抑制 神经网络 通用逼近 bionics lateral inhibition neural network universal approximator
  • 相关文献

参考文献15

  • 1LeungF HF,Lam H K,Ling S H.etal.Tuning of the structure and parameters of a neural network using an improved genetic algorithm [J].IEEE Transactions on Neural Networks,2003,14(1) : 79-88.
  • 2Tsai J,Chou J,Liu T.Tuning the structure and pa rameters of a neural network by using hybrid taguchi- genetic algorithm [J].IEEE Transactions on Neural Networks,2006,17(1): 69-80.
  • 3Islam M M,Sattar MA,Amin M F,et al.A newconstructive algorithm for architectural and functional adaptation of artificial neural networks [J].IEEE Transactions on Systems,Man and Cybernetics,Part B (Cybernetics),2009,39(6) : 1590-1605.
  • 4宋彦坡,彭小奇.一种结构自适应神经网络及其训练方法[J].控制与决策,2010,25(8):1265-1268. 被引量:7
  • 5Jaeger H,Haas H.Harnessing Nonlinearity: Predicting chaotic systems and saving energy in wireless communi- cation [J].Science,2004,304(5667): 78-80.
  • 6朱小龙,杨建国,代贵松.基于AVQ聚类和OIF-Elman神经网络的机床热误差建模[J].上海交通大学学报,2014,48(1):16-21. 被引量:11
  • 7Lorente De N6 R.Cerebral Cortex= Architecture,in- tracortical connections,motor projections[C]// Ful ton J F.Physiology of the Nervous System.New York ..Oxford University Press,1949 : 288-312.
  • 8Cruikshank S J,Lewis T J ,Connors B W.Synaptic basis for intense thalamocortical activation of feedfor ward inhibitory ceils in neocortex [J].Nature Neuro- science,2007,10(4): 462-468.
  • 9Hornik K,Stinchcombe M,White H.Muhilayer feed-forward networks are universal approximators[J].Neu- ral Networks,1989,2(5): 359-366.
  • 10Blake C,Merz C.UCI repository of machine learning databases[DB],http: //www.its.uci.edu/- ml- earn/MLRepository,html,Department of Informa tion and Computer Sciences,University of California,Irvine,USA,1998.

二级参考文献34

  • 1王俊年,申群太,周少武,沈洪远.基于种群小生境微粒群算法的前向神经网络设计[J].控制与决策,2005,20(9):981-985. 被引量:13
  • 2朱岩,鹿应荣,李倩.MW-OBS:An Improved Pruning Method for Topology Design of Neural Networks[J].Tsinghua Science and Technology,2006,11(3):307-312. 被引量:1
  • 3史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 4Jani J T Lahnajarvi, Mikko I Lehtokangas, Jukka P P Saarinen. Evaluation of constructive neural networks with cascaded architectures[J]. Neurocomputing, 2002, 48(1-4): 573-607.
  • 5Bodyanskiy Y, Dolotov A, Pliss I, et al. The cascade orthogonal neural network[C]. The 6th Int Conf onInformation Research and Applications. Varna: FOI THEA-Publisher, 2008: 13-20.
  • 6Huynh T Q, Setiono R. Effective neural network pruning using cross-validation[C]. Int Joint Conf on Neural Networks. Washington: IEEE Inc, 2005: 972-977.
  • 7Konstantinos P F. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms[J]. Neural Networks, 2005, 18(7): 934-950.
  • 8Haralambos S, Alex A, Stefanos M, et al. A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms[J]. Computers and Chemical Engineering, 2004, 28(1/2): 209- 217.
  • 9Yu J B, Wang S J, Xi L E Evolving artificial neural networks using an improved PSO and DPSO[J]. Neurocomputing, 2008, 71(4-6): 1054-1060.
  • 10Singh Y P, RoyChowdhury E Dynamic tunneling based regularization in fecdforward neural networks[J]. Artificial Intelligence, 2001, 131(1/2): 55-71.

共引文献18

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部