摘要
针对神经网络的结构设计,根据仿生学原理提出一种跨越-侧抑制神经网络(S-LINN).该多层网络结构引入了层内中间抑制神经元的侧向连接以及神经元在多个层内进行的信息传递.通过分析网络的逼近能力证明网络的学习能力,设计基于误差反向传播思想的梯度下降学习算法.通过鲍鱼年龄预测回归问题的仿真实验表明,S-LINN在处理实际回归问题时,不但能够保证较高训练精度,同时可获得更强的泛化能力.
A novel neural network model S-LINN was proposed based on the neurons connection and lateral inhibition mechanism in the cortex. Considering the multilayer and span connection of cortex neurons, the model was used to simulate the cerebral cortex structure. The approximation ability was verified throuth the universial approximate analysis. Meanwhile, a supervised algorithm based on the error back-propagation and gradient descent theory was developed to train the network parameters. Simulation results for the abalone age prediction demonstrate that the proposed model can achieve higher accuracy of approximation and generalization with a comparable compact network structure.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2014年第7期965-970,共6页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金重点项目资助(61034008)
关键词
仿生学
侧抑制
神经网络
通用逼近
bionics
lateral inhibition
neural network
universal approximator