期刊文献+

基于分布式无味边缘粒子滤波的同步定位与地图构建 被引量:2

Distributed Unscented Marginalized Particle Filter for Simultaneous Localization and Mapping
下载PDF
导出
摘要 针对复杂环境下同步定位与地图构建(SLAM)中分布式粒子滤波算法存在计算量大、粒子退化严重的问题,在分布式算法的基础上结合无味粒子滤波和边缘化算法,提出了一种基于分布式无味边缘粒子滤波的算法.该算法依据分布式思想将系统分解为多个仅包含部分状态量的子系统,各子系统均采用无味粒子滤波算法进行状态估计,通过边缘化算法优化无味粒子滤波算法的边缘分布函数,主滤波器融合各子滤波器的数据计算最终结果,克服了滤波精度低、计算复杂度高的问题.最后,通过仿真试验证明改进的分布式边缘粒子滤波算法能够抑制粒子退化现象,具有较好的实时性和滤波精度,是解决SLAM的新的有效方法. Aimed at the problems of low precision, large amount of calculation and severe sample degeneracy of simultaneous localization and mapping(SLAM), this paper presented a distributed unscented marginalized particle filter(DUMPF) algorithm based on the combination of the distributed unscented particle fil- ter(DUPF) with the marginalized particle filter(MPF). In the proposed method, the SLAM system was divided into several subsystems according to the distribution algorithms. The unscented particle filter (UPF) was used in each subsystem to estimate a part of the states. The marginal distribution of the UPF was optimized to reduce the computational complexity. The estimated results of the subsystems were transmitted to the master filter to obtain the final result. The simulation results showed that the improved DUMPF could prevent the particle degeneration problem, and had a higher precision and a smaller computational complexity.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第7期987-992,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(60975065) 北京市青年拔尖人才培育计划(CITTCD201304046)
关键词 同步定位与地图构建 分布式无味粒子滤波 边缘粒子滤波 simultaneous localization and mapping(SLAM) distributed unscented particle filter(DUPF) marginalized particle filter(MPF)
  • 相关文献

参考文献12

  • 1Durant-Whyte H,Bailey T.Simultaneous localization and mapping: Part I the essential algorithms[J].Ro- botics and Automation Magazine,2006,13 (2) : 99- 110.
  • 2Tuna G,GulezK,GungorVC,etal.Evaluations of different simultaneous localization and mapping (SI.AM) algorithms[C] // Conference on IEEE Indus- trial Electronics Society.Montreal: IEEE,2012: 2693-2698.
  • 3Csorba M.Simuhaneous localization and map build- ing [D].PhD dissertation,University of Oxford,1997.
  • 4Huang S,Dissannyake G.Convergence analysis for extended kalman filter based SLAM [C]//IEEE In- ternational Conference on Robotics and Automation.Orlando: IEEE,2006:411-417.
  • 5杨宁,钱峰,朱瑞.基于遗传算法的改进粒子滤波算法[J].上海交通大学学报,2011,45(10):1526-1530. 被引量:14
  • 6Van der Merwe R,Doucet A,de Freitas N,et al.The unscented particle filter [R].Technical report,Cambridge University Engineering Department,2000.
  • 7Won D,Chun S,Sung S.INS/vSLAM system using distributed particle filter [J].International Journal of Control,Automation,and Systems,2010,8 ( 6 ) ..1232 -1240.
  • 8Thomas S,Fredrik G.Marginalized particle filters for mixed linear/nonlinear state-space models [J].IEEE Transactions on Signal Processing,2005,53 (7) : 2279-2289.
  • 9朱志字.粒子滤波算法及其应用[M].科学出版社,2010.
  • 10张铁栋,万磊,王博,曾文静.基于改进粒子滤波算法的水下目标跟踪[J].上海交通大学学报,2012,46(6):943-948. 被引量:6

二级参考文献25

  • 1房建成,申功勋.车载DR系统自适应扩展卡尔曼滤波模型的建立及仿真研究[J].中国惯性技术学报,1998,6(3):24-28. 被引量:10
  • 2杨宁,张静,田蔚风.遗传算法在DGPS动态整周模糊度解算中的应用[J].系统仿真学报,2005,17(8):2025-2026. 被引量:9
  • 3徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9-16. 被引量:123
  • 4叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 5Arulampalam M S, Maskell S, Gordon Nl, et al. A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Park S, Hwang J, Rou K, et al. A new particle filter inspired by biological evolution:Genetic filter[J]. Journal of Applied Science Engineering and Technology, 2007,4(1):459-463.
  • 7YANG Ning, TIAN Wei-feng, JIN Zhi-hua, et al. Particle filter for sensor fusion in a land vehicle navigation system[J]. Measurement Science and Technology, 2005(16): 677-681.
  • 86023E/6024E/6025E/User Manual. National Instruments Corporation.2000.
  • 9王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.
  • 10Folkesson J, Leonard J. Feature tracking for under- water navigation using sonar[C] // Proceedings of the 2007 IEEE/RSJ International Conference on IntelligentRobots and Systems. USA: IEEE,2007: 3678-3684.

共引文献18

同被引文献5

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部