期刊文献+

基于模糊聚类测点优化与向量机的坐标镗床热误差建模 被引量:19

Thermal Error Modeling of a Coordinate Boring Machine Based on Fuzzy Clustering and SVM
下载PDF
导出
摘要 为了研究电主轴系统热特性对机床精度的影响,建立了主轴轴向及径向热误差模型.以精密坐标镗床为对象,采用五点法对主轴热误差进行测量,并分析了转速对主轴热误差及温度场的影响规律.利用模糊聚类分析法对温度变量进行分组优化,选出对热误差敏感的温度变量,建立主轴轴向热伸长及径向热倾角的最小二乘支持向量机(LS-SVM)以及多元线性回归(MLRA)的综合热误差模型,并设定了预测优度评价标准.结果表明:模糊聚类分组法能有效降低温度变量间的多重共线性,并提高模型的稳定性;LS-SVM模型具备全局寻优的特点,可实现不同工况的高精度预测,预测精度可达90%,且比传统的MLRA模型有更好的通用性以及更强的泛化能力,可作为后期热误差的补偿模型. To investigate the effect of the thermal characteristics of a motorized spindle system on the precision of a machine tool,two thermal error modeling of a CNC boring machine spindle were proposed,and a five-point method was used to measure the thermal errors of the spindle.The relationships between the spindle speed and temperature field,and thermal errors were analyzed.Then the method combining fuzzy clustering and correlation analysis was presented to optimize temperature variables and select the variables sensitive to thermal error.Subsequently,the least square support vector machine(LS-SVM)and multivariable linear regression analysis(MLRA)models were established for axial elongation and radial declinations.The results indicate that the fuzzy cluster can reduce the multicollinearity among temperature variables and improve the stability of the model.Moreover,the LS-SVM has better generalization than MLRA under different cutting conditions,and the prediction accuracy could reach up to 90%,which could be used to compensate thermal errors of the machine.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第8期1175-1182,1188,共9页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)资助项目(2012AA040701)
关键词 坐标镗床电主轴 热误差建模 模糊聚类分析 最小二乘支持向量机 多元线性回归分析 boring machine spindle thermal error modeling fuzzy cluster least square support vector machine(LS-SVM) multivariable linear regression analysis(MLRA)
  • 相关文献

参考文献16

  • 1Bryan J B. International status of thermal error re search [J]. Annals of ClRP, 1968, 16(1):203-215.
  • 2Min X, Jiang S. A thermal model of a ball screw drive system for a machine tool [J]. Journal of Me- chanical Engineering Science, 2011, 1 : 186 225.
  • 3Zhao H T, Yang J G, Shen J H. Simulation of ther- mal behavior of a CNC machine tool spindle [J]. In- ternational Journal of Machine Tools and Manufacture, 2007, 47(6) :1003-1010.
  • 4Creighton E, Honegger A, Tulsian A, et al. Analy- sis of thermal errors in a high-speed micro-milling spindle [J]. International Journal of Machine Tools and Manufacture, 2010, 50(4) :386-393.
  • 5Yang S, Yuan J, Ni J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network [J]. International Journal ofMachine Tools and Manufacture, 1996, 36 ( 4 ) : 527- 537.
  • 6Zhang Y, Yang J G, Jiang H. Machine tool thermal error modeling and prediction by grey neural network [J]. International Journal of Advanced Manufacturing Technology, 2012, 59(9):1065-1072.
  • 7Ouafi A E, Guillot M, Barka N. An integrated mod eling approach for ANN based real-time thermal error compensation on a CNC turning center [J]. Advanced Materials Research, Environmental and Materials En- gineering, 2013, 664: 907-915.
  • 8Hong C F, Ibaraki S C. Observation of thermal in- fluence on error motions of rotary axes on a five-axis machine tool by static R-test [J]. International Jour- nal of Automation Technology, 2012, 6 ( 2 ) : 196- 204.
  • 9Vyroubal J. Compensation of machine tool thermal deformation in spindle axis direction based on decom position method [J]. Precision Engineering, 2012, 36 (1):121- 127.
  • 10Vissiere A, Nouira El, Damak M, et al. A newly conceived cylinder measuring machine and methods that eliminate the spindle errors [J]. Measurement Science and Technology, 2012, 23 ( 9 ) : 1-11.

二级参考文献12

  • 1褚巍,赵学增,Joseph Fu,肖增文.基于最小二乘拟合的不同探针测量线宽的比较[J].哈尔滨工业大学学报,2004,36(11):1514-1519. 被引量:1
  • 2陶晓杰,王治森.滚齿机床热变形对加工精度的影响[J].机械传动,2005,29(3):54-55. 被引量:10
  • 3刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26
  • 4Fraser S, Atria M H. Osman M O M. Modeling identification and control of thermal deformation of machine tool structures. Part Ⅱ: Generalized transfer functions [J]. ASME Journal Of Manufacturing Science and Enginnering. 1998. 120(3) :632-639.
  • 5Yang J G, Yuan J X. Ni J. Thermal error mode anal ysis and robust modeling for error compensation on a CNC turning center [J]. International Journal of Machine Tools & Manufacture. 1999. 39(9):1367-1381.
  • 6Lo C H. Yuan J X. Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation [J]. International Journal of Machine Tools & Manufacture. 1999. 39(9):1383-1396.
  • 7Lo C H, Ni J, Yuan J X. Thermal sensor placement strategy for machine error compensation [C] // Penche C W, Takeshi G H. Dynamic System and Control Division. Atlanta: ASME. 1996: 341-348.
  • 8Yang J G, Ren Y Q, Du Z C. Robust modeling and real time compensation for the thermal error on a large number of CNC turning centers [J]. Key Engineering Materials, 2004, 2,59 - 260 : 756 - 760.
  • 9关耀奇.热变形对精密加工的影响与控制[J].机械研究与应用,2001,14(2):1-2. 被引量:8
  • 10杨建国,任永强,朱卫斌,黄明礼,潘志宏.数控机床热误差补偿模型在线修正方法研究[J].机械工程学报,2003,39(3):81-84. 被引量:75

共引文献9

同被引文献184

引证文献19

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部