期刊文献+

外激励作用下输流管道伴随内共振的非线性振动分析 被引量:5

Nonlinear vibration of a fluid-conveying pipe under external excitation accompanied with internal resonance
下载PDF
导出
摘要 利用多元L-P法研究外部周期激励下两端固定输流管道伴随内共振的非线性受迫振动问题。外激励流固耦合系统固有频率第二阶约为第一阶3倍且激励频率接近前两阶固有频率中间值时会发生伴随强烈内部共振的组合共振,并用多元L-P法求解振动响应,分析前两模态运动及外激励幅值对内共振的影响。数值算例揭示出系统因内共振发生的更丰富、复杂的动力学行为,随激励幅值增大内共振发生趋势降低,响应形式亦发生变化。用多元L-P法研究非线性动力学便捷、高效。 An external periodic load was considered to act on a fluid-conveying pipe clamped at both ends,and the nonlinear forced vibration of such a system was explored by the multidimensional Lindstedt-Poincaré(MDLP)method. According to the analysis,when the second natural frequency of the system is nearly thrice the first one,and the excitation frequency is nearly at the middle of first two natural frequencies,accompanied internal resonance may occur to form a combination resonance.The characteristics of the response were discussed,and the motions of first two modes were investigated in detail.The influence of excitation amplitude on the internal resonance was analyzed.Some numerical examples reveal the rich and complex dynamic behaviors caused by internal resonance and show that the occurrence tendency of internal resonance will die down and the response modes will vary with the increase of excitation amplitude. The convenience and efficiency of the MDLP method in predicting nonlinear dynamics are demonstrated by the results of the study.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第22期146-151,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51275315) 辽宁省教育厅科研项目(L2013160)
关键词 输流管道 非线性振动 内共振 外周期激励 多元L-P法 fluid-conveying pipe nonlinear vibration internal resonance external periodic excitation multidimensional Lindstedt-Poincar&#233 method
  • 相关文献

参考文献21

  • 1Ni Q, Zhang Z L, Wang L. Application of the differential transformation method to vibration analysis of pipes conveying fluid [ J ]. Applied Mathematics and Computation, 2011, 217(16) : 7028 -7038.
  • 2Wang L, Dai H L, Qian Q. Dynamics of simply supported fluid-conveying pipes with geometric imperfections [ J ]. Journal of Fluids and Structures, 2012, 29:97 -106.
  • 3梁峰,杨晓东,闻邦椿.脉动流激励下输流管道的参数共振IHB方法研究[J].振动与冲击,2008,27(9):44-46. 被引量:7
  • 4Wang L H, Zhao Y Y. Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances [J]. International Journal of Solids and Structures, 2006, 43 (25/26) : 7800 - 7819.
  • 5Dwivedy S K, Kar R C. Simultaneous combination and 1:3:5 internal resonances in a parametrically excited beam-mass system [J].International Journal of Nonlinear Mechanics, 2003, 38(4): 585-596.
  • 6Ribeiro P, Petyt M. Non-linear free vibration of isotropic plates with internal resonance [J]. International Journal of Nonlinear Mechanics, 2000, 35 (2) : 263 - 278.
  • 7Thomas O, Touz6 C, Chaigne A. Non-linear vibrations offree-edge thin spherical shells : modal interaction rules and 1 : 1:2 internal resonance [J]. International Journal of Solids and Structures, 2005, 42( 11/12): 3339- 3373.
  • 8徐鉴,杨前彪.FLOW-INDUCED INTERNAL RESONANCES AND MODE EXCHANGE IN HORIZONTAL CANTILEVERED PIPE CONVEYING FLUID (Ⅱ)[J].Applied Mathematics and Mechanics(English Edition),2006,27(7):935-941. 被引量:4
  • 9Panda L N, Kar R C. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances [J]. Nonlinear Dynamics, 2007, 49(1/2): 9-30.
  • 10Panda L N, Kar R C. Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances [J]. Journal of Sound and Vibration, 2008, 309 ( 3/5 ) : 375 - 406.

二级参考文献30

  • 1金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2):190-195. 被引量:21
  • 2陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45. 被引量:17
  • 3蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838. 被引量:19
  • 4Paidoussis M P, Issid N T. Experiments on parametric resonance of pipes containing pulsatile flow[ J]. ASME Journal of Applied Mechanics, 1976,43 : 198-202.
  • 5Ariaratnam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid [J].Journal of Sound and Vibration, 1986,107:215-230.
  • 6Namaehehivaya N S, et al. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmouic resonance and 2. Combination resonance [ J ]. International Journal of Nonlinear Mechanics, 1989,24 : 185-208.
  • 7Jin J D, Song Z Y. Parametric resonances of supported pipes conveying pulsating fluid [ J ]. Journal of Fluids and Structures, 2005,20 (6) :763-783.
  • 8金基铎 梁峰 张宇飞.输流管道参数共振响应的一种近似解法.振动与冲击,2006,25:623-625.
  • 9Lau S L, Cheung Y K. Amplitude incremental variational principle for non-linear vibration of elastic systems [ J ]. ASME Journal of Applied Mechanics, 1981,48(4) :959-964.
  • 10Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonic balance method to cubic non-linearity systems [ J ]. Journal of Sound and Vibration, 1990, 140 ( 2 ) : 273-286.

共引文献9

同被引文献47

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部