期刊文献+

CTAB辅助电沉积V_2O_5薄膜及储锂性能研究 被引量:1

Preparation of V_2O_5 Films by CTAB Assisted Electrodeposition Method and Its Lithium Storage Performance
下载PDF
导出
摘要 以五氧化二钒、双氧水和十六烷基三甲基溴化铵(CTAB)为原料,采用溶胶凝胶法制备了V2O5溶胶,并通过电沉积法在不锈钢基体上制备了正交晶系的V2O5薄膜电极材料。采用X-射线衍射和场发射扫描电子显微镜表征了V2O5薄膜材料的微观结构和表面形貌;采用循环伏安曲线、交流阻抗谱和充放电测试研究了V2O5薄膜作为锂离子电池正极材料的储锂性能。结果表明,在添加3%CTAB的V2O5溶胶中电沉积的V2O5薄膜比未添加CTAB的V2O5溶胶中电沉积的V2O5薄膜具有更高的电化学反应可逆性、更低的电化学反应阻抗、更好的嵌锂活性和倍率性能。 V2O5 sol was prepared by sol-gel method with V2O5 powder, H2O2 and CTAB as raw materials. Orthorhombic V2O5 thin films were fabricated by electrodeposition on stainless steel. Microstructure and surface morphology of the V2O5 thin films were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). Lithium storage performance of the V2O5 thin films as cathode materials for lithium ion batteries was studied by cyclic voltammetry ( CV), electrochemical impedance spectroscopy ( EIS), and charge-discharge tests. The results demonstrated that the V2O5 thin films obtained from V2O5 sol with 3wt. % CTAB had higher electrochemical reaction reversibility, lower electrochemical reaction impedance, better lithium intercalation activity and rate performance.
出处 《电镀与精饰》 CAS 北大核心 2014年第11期4-7,23,共5页 Plating & Finishing
基金 国家自然科学基金项目(21263003 51204061) 广西自然科学基金项目(2012jj AA20053) 广西矿冶与环境科学实验中心科研项目(KH2011ZD005)
关键词 CTAB 锂离子电池 正极材料 电沉积 V2O5薄膜 储锂性能 CTAB lithium ion batteries cathode materials electrodeposition V2O5 films lithium storage performance
  • 相关文献

参考文献22

  • 1Whittingham M. Lithium batteries and cathode materials [ J ]. Chemical Reviews,2004,104 (10) :4271-4301.
  • 2Pan A Q, Choi D, Zhang J G, et al. High-rate cathodes based on Li3V2 (PO4 )3 nanobehs prepared via surfactant- assisted fabrication[ J]. Journal Power Sources ,2011,196 (7) :3646-3649.
  • 3Tarascon J M, Recham N, Armand M, et al. Hunting for better li-based electrode materials via low temperature in- organic synthesis [ J ]. Chemistry of Materials, 2010, 22 (3) :724- 739.
  • 4Li H, Wang Z, Chen L Q, et al. Research on advanced ma- terials for li-ion batteries [ J ]. Journal of Advanced Mate- rials ,2009,21:4593-4607.
  • 5Delmas C, Auradou C, Cocciantelli J M, et al. The LixV205 System: An overview of the structure modifica- tions induced by the lithium intercalation [ J ]. Solid State Ionics, 1994,69 (3-4) :257-264.
  • 6Yan J, Sumboja A, Khool E, et al. V: Os loaded on SnO2 nanowires for high-rate Li ion batteries [ J ]. Advanced Materials, 2011,23 ( 6 ) :746- 750.
  • 7Cocciantelli J M, Doumerc J P, Pouchard M. Crystal chemistry of electrochemically inserted LixV205 [ J ]. Journal of Power Sources, 1991,34(2) :103-111.
  • 8Galy J. Vanadium pentoxide and vanadium oxide bronzes- Structural chemistry of single (S) and double (D) layer MxV205 phases [ J]. Journal of Solid State Chemistry, 1992,100(2) :229-245.
  • 9Cava R J, Santoro A, Murphy D W, et al. The structure of the lithium-inserted metal oxide 8-LiV20s [ J]. Journal of Solid State Chemistry, 1986,65 ( 1 ) :63-71.
  • 10Li Y W, Yao J H, Uchaker E, et al. Leaf-Like V20s nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries [ J ]. Advanced Energy Materials,2013,3 (9) : 1171-1175.

二级参考文献105

  • 1刘国强,曾潮流,徐宁,高虹,杨柯.锂蓄电池正极材料LiV_3O_8的合成和充放电性能[J].中国有色金属学报,2002,12(z1):70-73. 被引量:5
  • 2WHITTINGHAM M A. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104:4271 4301.
  • 3CHERNOVA N A, ROPPOLO M, DILLON A C, WHITTINGHAM M S. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. J Mater Chem, 2009, 19: 2526-2552.
  • 4PAN A, CHOI D, ZHANG J G, LIANG S Q, CAO G Z, NIE Z M, AREY B W, LIU J. High-rate cathodes based on Li3Vz(PO4)3 nanobelts prepared via surfactant-assisted fabrication[J]. J Power Sources, 2011,196:3646 3649.
  • 5PAN A, ZHANG J G, NIE Z M, CAO G Z, AREY B W, LI G, LIANG S Q, LIU J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries[J]. J Mater Chem, 2010, 20: 9193-9199.
  • 6PAN A, ZHANG J G, CAO G Z, LIANG S Q, WANG C M, NIE Z M, AREY B W, XU W, LIU D W, XIAO J, LI G, LIU J. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries[J]. J Mate Chem, 2011, 21:10077 10084.
  • 7PAN A, ZHANG J G, CAO G Z, XU W, NIE Z M, XIAO J, CHOI D, AREY B W, WANG C M, LIANG S Q. Template free synthesis of LiV308 nanorods as a cathode material for high-rate secondary lithium batteries[J]. J Mater Chem, 2011, 21: 1153-1161.
  • 8OSTERMANN R, LI D, YIN Y, MCCANN J T, XIA Y. V205 nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination[J]. Nano Letters, 2006, 6: 1297-1302.
  • 9TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414: 359-367.
  • 10BURKE A F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95: 806-820.

共引文献12

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部