期刊文献+

自组织数据挖掘及灰色理论比较应用研究

The comparison between the self-organizing data mining and grey prediction model
下载PDF
导出
摘要 通过对自组织挖掘算法的理论分析和实验研究,对自组织数据挖掘和灰色理论在不同对象中的拟合和预测效果进行比较分析,揭示了自组织数据挖掘与灰色预测方法的不同特征和属性。灰色数列预测是指利用动态GM模型,对系统的时间序列进行数量大小的预测,即对系统的主行为特征量或某项指标,发展变化到未来特定时刻出现的数值进行预测。比较研究的结果显示:对于周期性的贫信息数据及噪声干扰的复杂系统,灰色理论是适宜的选择。 Based on the theoretical analysis of the algorithm and experiment research, this paper elucidates the distinction and relation between the self-organizing data mining and Grey Theory method. It revealed the different character and attribution for the self-organizing data mining and Grey theory. The grey an ordered series of numbers forecasting is using dynamic GM' s model , and the time alignment to the system carries on the forecasting of quantity dimension, and with namelying main action characteristic capacity or certain quota to the system is developed numerical value that changes the emergence to the specially designated or appointed moment of future to calculate. Our research shows that the Grey Theory method is a suitable choice on the modeling and forecasting for poor information system and complex systems with noise.
出处 《数字通信》 2014年第5期10-12,共3页 Digital Communications and Networks
关键词 灰色预测 自组织数据挖掘 GM模型 regression analysis, self-organizing data mining, GM' s model
  • 相关文献

参考文献4

  • 1LEMKE F,MUELLER J A.Medical data analysis using self-organizing data mining technologies[J].Systems Analysis Modelling Simulation,2003,43 (10):1399-1408.
  • 2邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002..
  • 3郑明翠,贺昌政.自组织数据挖掘与回归分析方法的比较研究[J].系统工程与电子技术,2005,27(10):1748-1751. 被引量:6
  • 4KANG Yaming.Study on prediction of clothes color based on gray theory and support vector machine[J].Journal of Convergence Information Technology,2012,7 (17):116-123.

二级参考文献6

  • 1Madala H R, Ivakhnenko A G. Inductive learning algorithms for complex systems modeling [ M ]. Boca Raton , London, Tokyo:CRC Press Inc ,1994. 121 - 123,111 - 115.
  • 2陈希孺.王松桂近代回归分析[M].安徽教育出版社,1987,9..
  • 3ИвахнeнкоАГ.复杂系统的实验途径建模(俄)[M].Москва:Ра(б)uо ucвязu,1986..
  • 4Barron A R, Barron R L. Statistical learning networks: a unifying view[A]. In Computer Science and Statistics: Proc. of the 20st Interface[C], 1988. 192- 203.
  • 5贺昌政,吕建平.自组织数据挖掘理论与经济系统的复杂性研究[J].系统工程理论与实践,2001,21(12):1-5. 被引量:45
  • 6贺昌政,张宾,俞海.自组织数据挖掘与人工神经网络方法比较研究[J].系统工程理论与实践,2002,22(11):11-14. 被引量:9

共引文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部