期刊文献+

GEP算法在无线传感器网络数据预测中的仿真应用 被引量:1

Simulation Application of GEP in WSNs Data Forecasting
下载PDF
导出
摘要 数据预测是研究无线传感器网络数据融合的重要方法。利用因特尔伯克利实验室开源数据为样本,采用时序预测方法分析了数据的时间相关性,深入研究了基因表达式编程方法(GEP)在无线传感器网络预测应用的可能性。通过与同等条件下ARMA算法进行比较分析可知,GEP算法不依赖先验知识,并且预测精度高于ARMA算法,为GEP算法在无线传感器网络数据融合应用提供了研究依据。 Data forecasting is an important method of data fusion to study wireless sensor networks. Intel-Berkeley Lab open resource is chosen as data sample,and temporal correlation is analyzed by using time series forecasting. Especially,the proposed approach relies on autoregressive models built at each sensor to predict local readings,which is built by GEP algorithm. GEP algorithm does not require priori knowledge in comparison with ARM A algorithm under same condition,which has higher precision.
作者 姜静 侯振乾
出处 《沈阳理工大学学报》 CAS 2014年第6期16-19,41,共5页 Journal of Shenyang Ligong University
关键词 无线传感器网络 时序分析 基因表达式编程 预测 wireless sensor networks timing analysis GEP prediction
  • 相关文献

参考文献7

  • 1Giuseppe Anastasi, Marco Conti, Mario D. Francesco, et al. Energy conservation in wireless sensor networks [J]. Ad Hoc Networks,2009,7 (3) :537 -568.
  • 2Wang Xue, Ma Junjie, Wang Sheng, et al. Time series forecasting for energy-efficient organization of wireless sensor networks [ J ]. Sensors, 2007,7 ( 9 ) : 1766 - 1792.
  • 3Broersen P M T. Automatic identification of time-se- ries models from long autoregressive models [ J ]. IEEETransactions on Instrumentation and Measurement, 2005,54 ( 5 ) : 1862 - 1868.
  • 4Zuo Jie ,Tang Changjie,Zhang Tianqing. Mining Predi- cate Association Rule by Gene Expression Program- ming [ C ]. WAIM02 ( International Conference for Web Information Age 2002 ). LNCS, Berlin: Springer- Verlag, 2002:92 - 103.
  • 5左劫.基因表达式编程核心技术研究[D].四川大学,2004.
  • 6吴晓刚,威廉·D.贝里(WiliamD.Berry).线性回归分析基础[M].上海:格致出版社,2011.
  • 7吴晓刚,威廉·D.贝里(WiliamD.Berry).线性回归分析基础[M].上海:上海人民出版社,2011.

共引文献7

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部