期刊文献+

高氯酸铵基复盐的制备与表征

Preparation and Characterization of Ammonium Perchlorate Based Double Salt
下载PDF
导出
摘要 为提高高氯酸盐(MxClO4)应用后的机械性能和热分解性能,用微乳液-水热结合法制备AP基复盐Mx(NH4)1-x ClO4,利用扫描电镜(SEM)、X射线衍射仪(XRD)表征Mx(NH4)1-x Cl O4的微观形貌和晶体结构,并采用差示扫描量热法(DSC)研究原料和产物的热分解性能。结果表明:通过工艺参数控制,2种氧化剂在分子间被均匀混合。所得高品质复盐晶体呈多面体形态,表面光滑、完整。晶体结构致密,晶形一致性好。高品质复盐晶体属正交晶系,有高的对称性。平均晶格常数为a=9.878 9,b=6.758 6,c=7.118 8。复盐在热分解过程中出现连续放热峰,有好的热分解性能。MxClO4在复盐分解过程中起晶型稳定剂和催化剂作用,2种原材料发生了相互反应。 In order to improve the mechanical properties and thermal decompositon of the perchlorate(MxClO4), an ammonium perchlorate based double salt Mx(NH4)1-xClO4 was prepared by a combination of microemulsion and hydrothermal methods. The micro-morphologies and crystal structures of Mx(NH4)1-xClO4 were characterized by scanning electron microscopy(SEM) and X-ray diffraction (XRD). The thermal decomposition properties of raw materials and product were studied by differential scanning calorimetry (DSC). The results show that two-oxidizers in intermolecular are uniformly mixed via control of the process parameters. The crystals of the high quality double salt obtained are polyhedral, surface smooth and complete. Its crystal structure is well-ordered and dense. The crystals of double salt are orthorhombic and have high symmetry. Average lattice constants area=9.878 9A,b=6.758 6A,c=7.118 8A. Continuous exothermic peaks appear in the thermal decomposition process of the double salt. Double salt has good decomposition performance. In the decomposition process of double salt, MxClO4 plays roles of crystal type stabilizer and catalyzer. And the two kinds of raw materials react mutually.
出处 《兵工自动化》 2014年第12期6-8,21,共4页 Ordnance Industry Automation
关键词 物理化学 复盐 高氯酸铵 MxClO4 热分解 physical chemistry double salt ammonium perchlorate MxClO4 thermal decomposition
  • 相关文献

参考文献12

  • 1Nerenberg R. Breathing Perchlorate[J]. Science, 2013, 340(6128): 38-39.
  • 2Jotanovic M, Andric Z, Tadic G, et al. A further study of crystallization of lithium perchlorate from LiCLO4- NACL-H20 system[J]. Applied Technologies & Innovations, 2010, 3(3): 15-22.
  • 3Ernst-Christian K. Special Materials in Pyrotechnics: III. Application of Lithium and its compounds in Energetic Systems[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(2): 67-80.
  • 4Luca L D, Price E W, Summerfield M. Nonsteady burning and combustion stability of solid propellants[M]. U.S. AIAA, 1992: 5-13.
  • 5DIAKITE Kahirou.Non-isothermal Decomposition Mechanism and Kinetics of LiClO_4 in Nitrogen[J].Chemical Research in Chinese Universities,2010,26(2):300-303. 被引量:3
  • 6Hyyppa J, Olander D E. LiC104 Containing propellant comp-ositions: U. S. Patent 4560425[P]. 1985.
  • 7Mottus E H. HOMOGENEOUS PROPELANT COMPOSI: U. S. Patent 3107185[P]. 1963.
  • 8loseph M, Jeffery W, William M. Develop environmentally clean methods for processing energetic oxidizers[C]// JANNAF PDCS and S& EPS Joint Meeting. Cocoa Beach, FL: GANNAF PDCS, 2000: 201-209.
  • 9Walha S, Bouchaala M, Ben S A. The interpenetrated three-dimensional framework of a new mixed lithium / ammonium perchlorate grown in a gel medium[J]. Acta CrystaUographica Section C, 2013, 69(4): 315-318.
  • 10Prince L. Microemulsions theory and practice[M]. New York: Elsevier, 2012: 10-15.

二级参考文献16

  • 1Friedman H.L.,J.Polym.Sci.Part C,1963,6,183.
  • 2Ng W.L.,Aust.J.Chem.,1975,28,1169.
  • 3Opfermann J.,J.Therm.Anal.,2000,60,641.
  • 4Tanaka H.,Thermochim.Acta,1995,267,29.
  • 5Scrosati B.,Electrochim.Acta,2000,45,2461.
  • 6Wang L.N.,Zhang Z.G.,Zhang K.L.,J.Power Sources,2007,167,200.
  • 7Wang L.N.,Li Z.C,Xu H.J.,et al.,J.Phys.,Chem.C,2008,112,308.
  • 8Moumouzias G.,Ritzoulis G.,Siapkas D.,et al.,J.Power Sources,2003,122,57.
  • 9Markowitz M.M.,Boryta D.A.,J.Phys,Chem.,1961,65,1419.
  • 10Vyazovkin S.,Thermochim.Acta,2000,355,155.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部