期刊文献+

个体在随机和异质网络相互转化的传染病模型研究

Epidemic Model Based on Individual Transferring Between Random and Heterogeneous Networks
下载PDF
导出
摘要 利用将人群分为随机和异质的两个子网,且个体可以在这两个子网之间相互转化的方法,建立了随机和异质接触传播模式不能同时在每个个体身上发生的一类多途径传染病模型.利用极限系统以及Gershgorin圆盘定理证明了模型的无病平衡点的唯一性,并利用下一代矩阵方法计算得到了模型的基本再生数,得到无病平衡点的稳定性,进而得到了在基本再生数小于1时疾病最终消亡的结论. A new epidemic model with multiple routes was established by dividing the population into random and heterogeneous subnetworks, and each individual can transfer from one subnetwork to another at any time, in which the transmission mechanisms of random and heterogeneous can't occur on each individual simulta- neously. The uniqueness of the disease-free equilibrium was obtained by using the limit system and the Gersh- gorin disk theorem. And then according to the method of next generation matrix, the basic reproduction num- ber of the model was derived. Finally, the local stability of the disease-free equilibrium was proved. It draws the conclusion that the epidemic will extinct if the basic reproduction number is less than one.
作者 张晓光 靳祯
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第5期493-498,共6页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11171314 113310009)
关键词 网络传染病模型 多途径传播 基本再生数 传播动力学 network epidemic model multiple routes of transmission the basic reproduction number transmission dynamics
  • 相关文献

参考文献16

  • 1Anderson R M, May R M, Anderson B. Infectious Dis- eases of Humans: Dynamics and Control [ M ]. Oxford Oxford University Press, 1992.
  • 2Diekmann O, Heesterbeek J A P. Mathematical Epidemi- ology of Infectious Diseases [ M ]. Chichester. Wiley, 2000.
  • 3Ma Zhien, Zhou Yicang, Wang Wendi, et al. Math- ematical Modelling and Research of Epidemic Dynamical Systems[M]. Beijing: Sciences Press, 2004.
  • 4Kuperman M, Abramson G. Small world effect in an epi- demiological model [J] Phys. Rev. Lett., 2001, 86 (13) : 2909-2912.
  • 5Pastor-Satorras R, Vespignani A. Epidemic spreading inscale-free networks[J]. Phys. Rev. Lett., 2001, 86 (14) : 3200-3203.
  • 6Newman M E J. Spread of epidemic disease on networks [J]. Phys. Rev. E, 2002, 66: 016128.
  • 7Diekmann O, De Jong M C M, Metz J A J. A determin- istic epidemic model taking account of repeated contacts between the same individuals [ J ]. 1. Appl. Prohab. , 1998, 135(2); 448-462.
  • 8Ball F, Neal P. A general model for stochastic SIR epi- demics with two levels of mixing [j ]. Math. Biosci. , 2002, 180(1): 73-102:
  • 9Ball F, Neal P. Network epidemic models with two levels of mixing[J]. Math. Biosci. , 2008, 212(1); 69-87.
  • 10Kiss I Z, Green D M, Kao R R. The effect of contact heterogeneity and multiple routes of transmission on final epidemic size[J]. Math. Biosci. , 2006, 203(1) : 124- 136.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部