摘要
利用将人群分为随机和异质的两个子网,且个体可以在这两个子网之间相互转化的方法,建立了随机和异质接触传播模式不能同时在每个个体身上发生的一类多途径传染病模型.利用极限系统以及Gershgorin圆盘定理证明了模型的无病平衡点的唯一性,并利用下一代矩阵方法计算得到了模型的基本再生数,得到无病平衡点的稳定性,进而得到了在基本再生数小于1时疾病最终消亡的结论.
A new epidemic model with multiple routes was established by dividing the population into random and heterogeneous subnetworks, and each individual can transfer from one subnetwork to another at any time, in which the transmission mechanisms of random and heterogeneous can't occur on each individual simulta- neously. The uniqueness of the disease-free equilibrium was obtained by using the limit system and the Gersh- gorin disk theorem. And then according to the method of next generation matrix, the basic reproduction num- ber of the model was derived. Finally, the local stability of the disease-free equilibrium was proved. It draws the conclusion that the epidemic will extinct if the basic reproduction number is less than one.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2014年第5期493-498,共6页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金资助项目(11171314
113310009)
关键词
网络传染病模型
多途径传播
基本再生数
传播动力学
network epidemic model
multiple routes of transmission
the basic reproduction number
transmission dynamics